2006년도 뇌연구촉진 시행계획

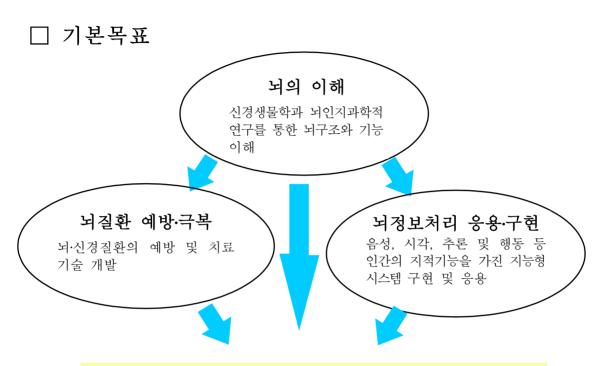
2006. 5.

과 학기술부 보건복지부 교육인적자원부 산업자원부 정보통신부

목 차

I . 개 요 ······	1
1. 계획수립의 근거 및 경위	1
2.「뇌연구촉진기본계획」주요내용	2
3. 2단계 추진성과 분석	6
Ⅱ. 2005년도 뇌연구 성과	. 8
1. 2005년 뇌연구 투자실적	. 8
2. 분야별 중점연구개발 성과	. 9
Ⅲ. 2006년도 뇌연구촉진시행계획	12
1. 중점 추진방향	12
2. 부처별 투자계획	12
3. 투자계획(총괄표)	13
4. 부처별 사업계획	14
가. 과학기술부	
나. 보건복지부	
다. 교육인적자원부	35
라. 산업자원부	
마. 정부출연기관	45
<참고자료> 1. 뇌연구기술계통도(Technology Tree)	
2. 분야별 뇌 연구 동향	
3. 국가별 뇌 연구 동향	59

I . 개 요


- 1. 계획수립의 근거 및 경위
- □ 법적 근거
 - ▶ 뇌연구촉진법에 의하여 과학기술부장관은 관계중앙행정 기관의 뇌연구 촉진을 위한 계획을 종합·조정한 후 「뇌연구촉진심의회」의 심의를 거쳐「뇌연구촉진기본 계획」을 수립 (동법 제5조)
 - 관계중앙행정기관의 장은「뇌연구촉진기본계획」의 시행을 위하여 매년「뇌연구촉진시행계획」을 수립(동법 제6조)

※관계중앙행정기관 : 교육인적자원부, 과학기술부, 산업자원부, 정보통신부, 보건복지부

□ 추진 경위

- 1997. 9 뇌연구개발사업 기본계획 수립
- 1998. 5 "뇌연구촉진법" 제정
- 1998.11 "뇌연구촉진법시행령"제정
- 1999. 7「뇌연구촉진기본계획('98~2007)」최초수립
 - 2000. 2 「2000년도 뇌연구촉진시행계획」수립
 - 2001. 3 「2001년도 뇌연구촉진시행계획」수립
- 2001.12 「뇌연구촉진기본계획('98~2007)」수정
 - 2002. 4 「2002년도 뇌연구촉진시행계획」수립
 - 2003. 4 「2003년도 뇌연구촉진시행계획」수립
 - 2004. 6 「2004년도 뇌연구촉진시행계획」수립
 - 2005. 5 「2005년도 뇌연구촉진시행계획」수립
- 2002. 12. 26 "뇌연구촉진법"개정

2. 「뇌연구촉진기본계획」주요내용

- 2007년까지 뇌연구 일부 분야에서 세계적 경쟁력 확보
 - 뇌신경질환의 예방·치료 기술 개발
 - 뇌 응용・구현의 핵심기반기술 확립
- ⇒ 산업발전 및 복지증진에 기여

□ 단계별 목표

제1단계 (1998-2000)

- 뇌연구의 핵심기초기술 확보 및 인력 양성
- 뇌의 생물학적 이해 및 뇌정보처리에 기반한 지능정보처리 기반기술 확립

제2단계 (2001-2003)

- 뇌연구 기반의 확장 및 응용기반기술 확보
 - 뇌기능 기반기술의 심화 및 뇌질환 예방·치료기술 개발 연구 확산과 뇌정보처리를 모방한 지능시스템 및 응용기술 확보

제3단계 (2004-2007)

- O 뇌연구의 실세계 응용 및 선진화
 - 뇌질환 예방·치료제의 개발
 - 뇌정보처리를 응용한 Digital Brain 구현

□ 중점 연구개발 내용 및 핵심과제

구 분	중점 R&D 분야	핵심 연구개발 과제
	뇌기능연구를 위한 기반기술개발	신경세포 발생, 분화 및 사멸의 메카니즘 규명생체내 이미징: 신경조직의 나노미터 단위 실시간 측정법 등
뇌의 신경 생물학적	뇌기능 가소성(Plasticity) 이해	• 학습과 기억의 신경생물학적 메카니즘 규명 등
이해	신경시스템 구조와 고등신경기능 이해	• 감각-운동, 행동 조절 통합계의 생물학적 분석 등
	뇌 기능 유전체 및 단백질체 연구를 통한뇌기능 향상(Smart Brain)	• 뇌의 각 영역에서 발현되는 유전자 및 단백질의 발굴과 기능 규명 등
	뇌신경질환의 기전 규명 및 진단 연구	뇌신경질환의 병인기전 규명 연구뇌신경질환의 검색, 진단 기술 개발 등
뇌질환 예방	신경세포 재생 및 기능 증진	• 손상된 뇌의 신경세포재생 및 제어기술 연구 등
및 극복	뇌질환 예방 및 치료제 개발	• 뇌신경질환 예방 및 진단기술 개발 • 뇌신경질환 치료기술 개발 등
	신경줄기세포 연구	신경줄기세포의 분화 과정 연구분화된 신경세포의 이식술 개발 등
	뇌신호 측정 및 분석기술 연구	• 뇌신호의 인지신경과학적 측정기술 개발 등
	뇌정보처리에 기반한 인공청각 시스템 개발	• 인간청각계 신호처리 메카니즘의 이해 및 모델링 연구 등
뇌정보 처리 이해 및 응용	뇌의 학습/기억/추론/언어 기능 이해 및 구현	• 학습/기억 유형별 정보처리 원리규명 및 모델링 등
	행동의 뇌정보처리적 이해 및 구현	• 신경계의 통신 및 제어 기전 • 계획모형 및 구현 등
	뇌기능 모방 멀티미디어 처리기술 개발 및 "디지털 브레인"개발	오감을 이용한 인간기능시스템(디지털 브 레인) 개발 등뇌기능 모듈 통합 기술 개발

□ 뇌연구 추진체계

[기본 체계]

- 정부는 관련 부처간 협력을 통한 범부처적 「**뇌연구촉진기본계획**」을 수립하며, 과학기술부가 이를 종합·조정
 - 국가차원의 대형 신설과제들과 연계된 뇌연구개발 지원체제 확립
- **뇌연구촉진심의회** 및 **뇌연구실무추진위원회**를 통하여 기본계획의 수립 등 주요 정책 심의
- 민간의 연구참여 여건이 성숙될 것으로 예상되는 제3단계에 산· 학·연의 **뇌연구개발 연구네트웤** 운영 및 **컨소시엄**을 구성

[부처별 역할 (뇌연구촉진법 제14조)]

과학기술부	○연구개발사업 주관 및 부처간 정책조정 ○기본계획의 수립과 시행계획 수립의 지원 및 조정 ○뇌 관련 중형기반기술 및 산업화에 필요한 중형/대형 핵심 원천기술의 개발 ○유용한 연구결과의 이용 및 보전을 위한 정보이용의 지원
	○ 뇌의약학 분야의 주관부처
보건복지부	○보건·의료 등에 관련되는 뇌의약학 기초 연구와 응용 기술 개발 및 산업화 촉진
	○학제간 교육프로그램 신설 및 지원을 통한 뇌연구분야의
교육인적자원부	전문인력 양성
,	○뇌과학 기초분야의 다양한 연구 지원
11 A1 -1 A1 H	○뇌연구 결과를 생산 및 산업공정에 효율적으로 응용하기
산업자원부	위한 응용기술의 개발 및 산업화 촉진
정보통신부	○뇌연구 결과의 정보·통신분야에의 응용기술 개발 및
02021	산업화 촉진

□ 투자계획

○ 10년간('98~2007) 총 4,106억원 투자 예정

- 과학기술부 등 5개 관계부처 : 2,986억원

- 민간 : 1,120억원

[단계별·부처별 투자계획]

(단위 : 억원)

구 분	1단계 실적	2단계 5	투자실적	3단계	합 계
। र	(1998 -2000)	계획	실 적	(2004 - 2007)	월 계
과학기술부	185	400	530.1	615	1,200
보건복지부	55	208	102.6	602	865
교육인적자원부	53	110	63	179	342
산업자원부	37	100	55.8	173	310
정보통신부	87	90	36	92	269
정부 계	417	908	787.5	1,661	2,986
민간 계	19	248	32.2	853	1,120
합계	436	1,156	819.7	2,514	4,106

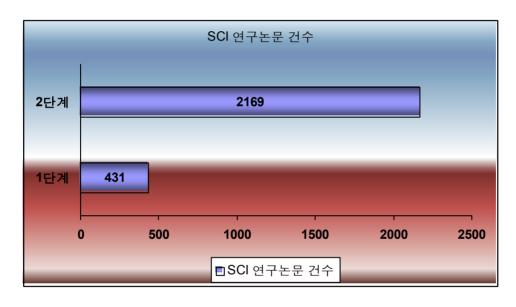
※ 2단계 계획대비 실적 : 71%

※ 3단계 : 계획대비 36% 추진('04~'05년)

3. 2단계(2001~2003) 추진성과 분석

가. 주요 성과

- □ 연구개발자원의 확충
 - ○「뇌연구촉진기본계획」의 수립·시행 이후 관련 연구인력의 규모가 지속적으로 증가
 - 뇌과학분야
 - · 약 350명('98년) ⇒ 약 500명(2000년) ⇒ 약 980명(2003년)
 - 뇌의약학분야
 - · 약 300명('98년) ⇒ 약 600명(2000년) ⇒ 약 800명(2003년)
 - 과기부 뇌과학사업단을 뇌신경생물사업단과 뇌신경정보학사업단 으로 분리운영함으로써 독자적인 뇌신경과학관련 기초 및 기반 연구인력의 육성에 기여
 - 뇌연구분야의 정부 연구개발 투자규모가 2000년 총 229억원에서 2003년에는 총 349억원으로 확대
 - 1, 2단계에서 축적된 뇌과학 연구분야의 기초 및 기반을 활용 하여 2003년 장기 대형 사업인 프론티어사업으로 「뇌기능활용 및 뇌질환치료기술개발사업」을 착수
 - 뇌신경과학 관련 전문 바이오벤처 (뉴로텍크, 뉴로제넥스, 바이 오버드 등)가 설립되어 신약개발 등 산업화 가능성 모색


□ 연구개발 성과

- 뇌연구분야 논문 발표가 크게 활성화
 - 매년 국내외 학술지, 학술회의 등을 통해 뇌연구분야 논문이 수 백 편 발표(1단계에 비하여 503% 증가)
 - Nature Neuroscience, Neuron, Journal of Neuroscience, IEEE Transactions on Neural Networks를 비롯한 외국 저명 학술지에도 국내 연구자에 의한 연구논문이 다수 게재

《 뇌 연구분야 정량적 연구 성과 지표('01~2003) 》

구분	Į. T	드문(SCI)		특허(출원, 등록)			기술
1 正	국내	국외	계	국내	국외	계	이전
1단계 ('98~'01)	145	286	431	4	_	4	_
2단계 ('01~'03)	769	1,400	2,169	225	54	279	22
계	914	1,686	2,600	229	54	283	22

《 2단계 정량적 연구성과 논문게재 수 》

Ⅱ. 2005년도 뇌연구 성과

1. 2005년도 투자실적

○ 4개 부처 및 출연기관에서 52,381백만원(정부 42,043백만원, 민간 10,338백만원)을 투입하여 뇌관련 연구개발사업 추진

(단위 : 백만원)

관계부처	사 업 명	사업기간	계획	'05실적
	○뇌 프론티어연구사업	'03~2012	9,033 (4,645)*	9,033 (4,645)
	○뇌신경생물학연구사업	'98~2007	2,000	2,000
	○뇌혈관한의학기반연구	'05~2014	1,500	1,500
과학기술부	○뇌영상용 초고자장MRI연구	'05~2011	1,000 (200)*	1,000 (4,000)
	○뇌질환연구센터(SRC)	'98~계속	800	800
	○Brain Research 24개사업(특정기초)	'78~계속	2,102	2,102
	○ 치매정복연구단 등 8개사업(창의연구)	'97~계속	5,065	5,065
	○신경신호조절연구실 등 4개연구실 (국가지정연구실)	'99~계속	873	1,305
보건복지부	○뇌의약학연구사업	'98~2007	3,015 (35)*	3,158 (172)
교육인적 자원부	○기초과학연구지원사업 및 선도연구 자지원사업 등 일부	'98~계속	2,500	2,848
산업자원부	○슈퍼지능칩 및 응용기술개발	'00~2010	2,325 (1,061)	2,325 (1,061)
	○뇌신경정보학연구사업	'98~2008	3,000	2,400
	○ Chemoinformatics 연구(KIST)	'02~2012	5,000	5,500
	○ 복합기술을 이용한 뇌기능연구(KIST)	'05~2015	_	450
	○ 뇌자도 원천 기술 개발(표준연)	′01~2005	300	148
출연기관 고유사업	○ 생체신호 측정 및 분석기술개발 (표준연)	'05~2014	-	750
	○ 의료기반 VR Therapy기술 개발 (전자통신)	'00~2006	1,069	1,069
	○생체화학분자개발사업(화학연)	'03~2005	590 (460)	590 (460)
	계		40,172	42,043
	·		(6,401)	(10,338)

(): 민간 투자부문

2. 분야별 중점연구개발 성과

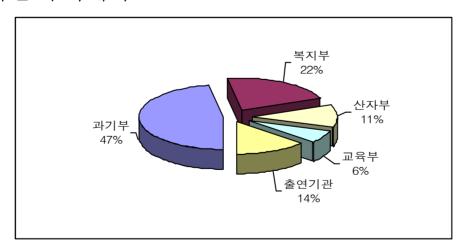
□「뇌의 신경생물학적 이해」부문

중점 R&D 분야	주요 연구성과
	o 고효율 PET와 MRI의 hybrid 기술을 세계 최초로 개발, 국제 특허 출원 중 (2005, 가천의대 조장희)
되기능연구를 위 참 기바기소개바	○ 발달과정 중 신경세포 사멸과 c-Jun 인산화의 관련성 규명 (2005, J Neuroscience, 고려대 선웅)
한 기반기술개발	○ 신경세포의 시냅스 내 신경물질의 분비 및 재흡수 관련한 Spin90 단백질의 역할을 실시간 세포 이미징 방법을 통해 규명(2005, J Neuroscience, 광주과학원 장성호)
	○ 시냅스가소성에 핵심적인 기능을 담당하는 PSD95 결합 단백질을 다수 동정하고 그 기능분석(2004~2005, Neuron 및 J Neuroscience 등, KAIST 김은준)
되기능 가소성 (Plasticity) 이해	○ 군소를 이용하여 신경가소성 조절에 관련한 신규 유전자 (ApLLP)를 발굴, 이에 의한 전사 조절 기전을 밝힘 (2005, Neuron, 서울대 강봉균)
	o 영국과 공동으로 신경가소적 변화에 관여하는 muscarinic receptor의 신규 역할 규명 (2005, Nature Neuroscience, 서울대 오석배)
신경시스템 구조 와 고등신경기능	o fMRI 분석을 위한 한국인 뇌지도를 작성하였으며, 이를 이용한 뇌지도 작성 (2005, Neuroimage, 서울대 이동수)
이해	 주의집중과 작업기억간의 상호작용에 관한 새로운 이론 규명 (2005, PNAS, 연세대 김민식)
뇌 기능 유전체 및 단백질체 연구	 세계에서 두 번째로 뇌기능 향상 생쥐 (Smart mouse)를 확립(2004, Neuron, KIST 신희섭)
를 통한 뇌기능 향상(Smart Brain)	o 초파리 유전학적 연구 방법을 뇌기능 연구와 접목하여, 일주기성 및 뇌 온도조절 중추의 신경조절 기작을 발굴 (2005, Nature Genetics, Neuron 등, KAIST 김재섭)

□「뇌질환 예방 및 극복」부문

중점 R&D분야	주요 연구성과				
	0	약물중독증의 병리적 기전에 관련한 adenylyl cyclase의 기능 규명(2005, PNAS, 이화여대 한평림)			
	0	뇌질환에 의한 신경세포 사멸 과정에 관여하는 마이크로글리아 의 활성 경로를 규명 (2005, J Neuroscience 및 J Immunology,			
	0	아주대 진병관·조은혜). 치매 발병 과정의 APP C-말단 펩티드의 관련성 규명(2005, FASEB J, 서울대 서유헌)			
	0	약물중독증의 병리적 기전에 관련한 adenylyl cyclase의 기능 규명(PNAS 게재, 이화여대 한평림, 2005)			
뇌신경질환의 기전 규명 및 진단 연구		뇌질환에 의한 신경세포 사멸 과정에 관여하는 마이크로글리아의 활성 경로를 규명 (J Neuroscience 및 J Immunology,아주대진병관·조은혜, 2005).			
	0	치매 발병 과정의 APP C-말단 펩티드의 관련성 규명(FASEB J에 게재, 서울대 서유헌, 2005)			
	0	알츠하이머병의 주요 원인유전자인 Presenilin-1의 작용 메카니즘 규명(J Biol Chem, 전남대 김권섭, 2005)			
	0	정신분열증 관여 도파민 D3 수용체의 새로운 신호전달기전의 규명(J Biol Chem, 전남대 김경만, 2005)			
	0	정신분열병에서 뇌섬엽의 모양변형에 관한 연구 (Neuroimage, 연세대 김재진, 2006)			
	0	알츠하이머환자에서의 림프구 활성 및 성장 저하(Biol Psychiatry, 성균관대 김도관·국립보건연구원 안상미, 2006)			
	0	중간엽줄기세포의 기능을 항진시켜 뇌졸중 치료기술 개발(국내 특허 획득, 미국특허 출원, 이주의대 서해영)			
신경세포 재생 및	0	중간엽줄기세포를 이용한 임상실험 진행(이주의대 안영환)			
기능 증진	0	신경재생을 촉진시키는 조성물로서, PDGF 유도체, Pax6, Heregulin-EFG 재조합바이러스 개발(국내특허 3건 출원,경희대 김윤희)			
	0	뇌졸중에 관련한 신약 후보물질을 개발하여 특허등록, 미국 현지법인의 fund를 활용하여 임상연구 1상을 추진중((주) 뉴로테크 곽병주)			
뇌질환 예방 및	0	신규 통증억제 약물을 발굴하여 독일 제약회사에 기술이전(서울대 의 오우택)			
치료제 개발	0	뇌허혈 관련 신규 신약후보물질을 발굴하여 제약회사에 기술이 전(이화여대 김원기)			
		새로운 아밀로이드 펩타이드 분해 효소 발견-국내특허출원완료, 미국특허출원(국립보건연구원 안상미)			
신경줄기세포 연구	1	신경줄기세포에 특이적으로 발현하는 형질전환마우스 개발 (아주의대 서해영, 숙명여대 박수철 교수 공동연구)			
		신경줄기세포를 인식하는 표면항체 개발(생명공학원 홍효정)			

□「뇌정보 처리 이해 및 응용」부문


중점 R&D분야	주요 연구성과
뇌신호 측정 및 분석기술 연구	 조산아부터 40주 정상아의 뇌에서 백질(white matter) fiber tract의 형성과정을 세계최초로 영상화에 성공 (2005, Investigative Radiology, KAIST 박현욱) 한국인의 한글과 한자 읽기에 관한 fMRI 실험을 통해 한글과 한자어 인식에 관한 신경기전을 대뇌의 활성화 패턴으로 설명(2005, Neuroscience Letters, KAIST 박현욱)
뇌정보처리에 기반한 인공청각 시스템 개발	○ 청각피질 등 인간 청각계의 후반부에서 나타나는 고 차 음성특징(복합음, 시간주파수 변화)을 정보이론 관 점에서 설명(2005, Neurocomputing, KAIST 이수영) ○ 효과적인 멀티 모달 기반의 음성인식을 위하여 입술 위치를 검출하고 이를 통해 입술 모양 정보를 획득 (2005, 특허등록, KAIST 양현승) ○ 생물학 기반 인공 망막 칩과 형상기억 합금을 이용한 사람과 유사한 기능을 갖는 움직임 추적 시스템 연구 (2005, IEEE Sensors Journal, 경북대 이민호, 신장규)
뇌의 학습/기억/추론/언 어 기능 이해 및 구현	 인공비서의 의사결정 모듈을 효과적으로 구축하기 위해 해당 도메인 지식을 진화 과정 중에 이용하는 방법을 개발(2005, IEEE Transactions on Evolutionary Computation, 연세대 조성배) 인간의 지각을 계산학적으로 설명하는 방법으로 manifold learning에 의한 kernel Isomap 방법 개발(2005, IEEE Int'l Conf. Development and Learning, 포항공대 최승진)
행동의 뇌정보처리적 이해 및 구현	○ 개별화된 사용자 인터페이스를 제공하는 능동학습 에 이전트의 디자인과 구축에 대한 원리를 설명(2005, LNAI 게재, 고려대 김성일) ○ 시청각 입력과 내부 감정이 복합적으로 인간의 행동에 작용하는 회귀 신경회로망 모델 개발(2005, KAIST 이수영)
되기능 모방 멀티미디어 처리기술 개발 및 "디지털 브레인" 개발	ㅇ 듣고, 대화하는 인공두뇌 1차 prototype 을 개발, 이를 이용하여 사용자에 서비스(일정관리, 특허검색 등)를 제공하는 인공비서(업무도우미) 개발(2006, KAIST 이수영)

Ⅲ. 2006년도 뇌연구촉진 시행계획

1. 중점 추진방향

- 뇌연구사업간 연계강화 및 뇌관련 기반지식 및 핵심기술기반 구축
- 연구성과 임상적용과 진단·치료의 응용 연구 집중지원
 - 치매치료제 실용화사업 신규 추진
- 기초과학 성과기반 환자중심·질병중심 연구 강화
- 뇌과학 기초학문분야 중점 지원으로 연구기반 조성 및 뇌과학 기초지원 증대를 통한 전문인력 양성 확대
- 수퍼지능칩 개발 환경·활용 시제품 제작 및 바이오 정보처 리를 이용한 질병진단 시제품 설계
- 인간지능 모방 시스템(인공두뇌)의 성능향상 및 뇌연구 성과 요소기술 확보 및 활용

2. 부처별 투자계획

(단위: 억원)

부처 계획	과기부	복지부	산자부	교육부	출연기관	총계
'05년 실적	228	32	47	28	85	420
'06년 계획	224	102	53	30	65	474
비중(%)	47.3%	21.5	11.2	6.3	13.7	100

3. 투자계획(총괄표)

관계부처	사 업 명	사업기간	'05실적	'06년계획	
	○뇌 프론티어연구사업	'03~2012	9,033 (4,645)	10,000 (2,000)	
	○뇌신경생물학연구사업	'98~2007	2,000	2,000	
	○뇌혈관한의학기반연구	'05~2014	1,500	1,500	
과학기술부	○뇌영상용 초고자장MRI연구	'05~2011	1,000 (4,000)	1,000 (200)	
작립기출구 	○우수연구지원센터(뇌질환연구센터)	'98~계속	800	700	
	○특정기초연구사업(Brain Research)	'78~계속	2,102	3,042	
	○창의적연구진흥사업(치매정복연구단 등)	'97~계속	5,065	3,090	
	○기타 뇌연구(국가지정연구실)	'99~계속	1,305	1,054	
	소 계		22,805	22,386	
	○뇌의약학연구사업	'98~2007	3,158 (172)	3,482 (173)	
보건복지부	○치매치료제 AAD-2004실용화사업	'06~계속	_	6,700	
	소 계		3,158 (172)	10,182	
교육인적 자원부	○ 기초과학연구지원사업 및 선도연구자 지원사업 등 일부	'98~계속	2,848	3,000	
	○ 슈퍼지능칩 및 응용기술개발	'00~2010	2,325 (1,061)	2,325 (1,061)	
산업자원부	○ 뇌신경정보학연구사업	'98~2008	2,400	3,000	
	소 계		4,725	5,325	
	○ Chemoinformatics 연구(KIST)	'02~2012	5,500	4,315	
	○ 복합기술을 이용한 뇌기능연구(KIST)	'05~2015	450	1,236	
	○ 뇌자도 원천 기술 개발(표준연)	′01~2005	148	_	
물연기관 교유사업	○ 생체신호 측정 및 분석기술개발 (표준연)	'05~2014	750	1,000 (50)	
工 <u></u> 开八百	○ 의료기반 VR Therapy기술 개발 (전자통신연)	'00~2005	1,069	_	
	○생체화학분자개발사업(화학연)	'03~2005	590 (460)	_	
	8,507	6,551			
	계				

※ (): 민간

4. 부처별 사업계획

가. 과학기술부

- □ 중점 추진방향
 - 뇌연구 사업단간 연계성 강화
 - 사업단 및 연구자 협의체를 구성하여 사업단간 연계와 교류 확대
 - O 뇌연구 핵심기반기술 및 뇌질환 극복을 위한 기반지식 구축
 - 뇌특이적 유용유전자 발굴 및 검증, 뇌질환 치료 후보물질 개발, 뇌신경생물학, 뇌혈관질환, 뇌질환 극복을 위한 생물 학적 기반지식 기반마련
 - 공동연구를 통한 창의적 기초연구 능력배양 및 핵심원천 기술 개발을 위한 특정기초연구 지원 강화
 - 특정기초연구 19개 계속과제 및 신규 15개 과제 추가 지원
 - 제2차 뇌연구촉진기본계획('08~'12) 수립을 위한 사전준비
 - 뇌연구의 현황분석 및 정책적 추진방향 기획

□ 투자 실적·계획 총괄표

(단위: 백만원)

사 업 명	사업기간	2005년	2006년 계획	비고
• 뇌프론티어사업	'03 ~ '12	9,033	10,000	(재)뇌기능사업단
• 나노바이오사업				
- 뇌신경생물학연구사업	′03~′12	2,000	2,000	경희대학교
- 뇌혈관질환 한의학 기반연구	′05~′14	1,500	1,500	한국한의학연구원
- 뇌영상용초고자장(7.0T)MRI	'05 ~ '12	1,000	1,000	가천의과대학교
• 기초뇌과학				
- 우수연구지원센터	'98~계속	800	700	아주대학교
- 특정기초연구사업	'78~계속	2,102	3,042	개인, 소규모연구
- 창의적연구진흥사업	'97~계속	5,065	3,090	5개 연구단 지원
- 국가지정연구실사업	'99~계속	1,305	1,054	4개 연구실 지원
Й		22,805	22,386	

□ 세부 사업별 추진계획

뇌기능활용및뇌질환치료기술개발연구사업 (21세기프론티어연구개발사업)

1) 사업개요

- 사업목표
 - 뇌특이적 유용 유전자 100종 이상 발굴 및 기능검증
 - 뇌기능연구 핵심기반기술 9종 개발
 - 뇌기능 항진기술 및 뇌질환 치료제 후보물질 10종 이상 발굴 및 실용화
- 사업내용
 - 뇌유전체 기능연구, 뇌기능 항진과 뇌질환 치료 핵심기전연구
 - 뇌연구 실용화연구 및 코아퍼실리티
- 주관부처(협조부처): 과학기술부
- 총괄주관기관(책임자): (재)뇌기능활용및뇌질환치료기술개발연구사업단(김경진)
- 총 연구기간 : 2003. 10. 1 ~ 2013. 3. 31
- 총 연구비 : 총 1,350억원 (정부 1,100억원, 민간 250억원)
- 2) 추진실적(사업개시~2005년까지의 실적 작성)
 - 연구기간 : 2003년 ~ 2005년
 - 연 구 비 : 총 326.3억원(정부 229.8억원, 민간 96.5억원)
 - 주요성과
 - ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 뇌 특이적 유용유전자 발굴 및 검증 : 신규 유전자(21종), 기능검증(27종)
 - 뇌기능연구 핵심기반기술(Neurotools) 3종 및 신약후보물질 2종 개발
 - 뇌신경 보호 유전자 Pyrexia 세계 최초 발견 미국 특허 출원(05.3, Nature Genetics)
 - 뇌신경세포보호기전에 대한 연구성과에 대한 기술실시계약 체결 (동화약품공업주식회사, 3년간 4.2억원)
 - 남용약물유도 유전자 관련 기술실시계약체결(녹십자, 3년간 2.5억원)
 - 뇌-기계접속기술 관련 기술실시계약 체결(림스테크널러지(주), 3년간 1.3억원)
 - 치매치료제 신약후보물질 실용화(뉴로테크(주) 3년간 20억원),

본 연구과제의 일부는 전임상, 임상 연구를 위하여 보건복지부 주관 실용화사업인「치매치료제(AAD-2004)사업」으로 선정되 어 2006년부터 추진될 계획임

- 뇌연구 인프라 구축 사업 추진(뇌유전자 발현 DB, 뇌질환 동물모델 DB, 인간 뇌질환 샘플, 신경행동검사 프로토콜 작성 등)

② 정량적 연구성과

(2005.12.31 기준)

	특 허			논 문			기술이전	
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)
35	23	19	6	44	265	272	4	2,800

3) 2006년도 계획

- 목 표 : 뇌특이적 유용유전자 발굴 및 검증, 뇌연구 핵심기반기술 및 뇌질환 치료 후보물질 발굴
- 연구내용
 - 뇌 유전체 기능연구
 - 뇌기능 항진과 뇌질환 핵심기전 연구
 - 뇌기능 항진 및 뇌질환 치료 후보물질 개발
 - 코아퍼실리티 과제 수행
- 연구비 : 총 120억원 (정부 100억원, 민간 20억원)
- 주요 추진일정

- 2006. 4 1단계 사업 평가

- 2006. 4 2단계 연구과제 공모 및 선정

- 2006. 5 2단계 1차년도 협약 체결 및 사업착수

4) 투자계획

(단위: 백만원)

구	분	'04년 이전	2005년	2006년	2007년 이후	합계
과학기	기술부	13,951	9,033	10,000	77,016	110,000
민	간	5,005	4,645	2,000	13,350	25,000
7	4)	18,956	13,678	12,000	90,366	135,000

뇌신경생물학연구사업(나노바이오)

1) 사업개요

- 사업목표 : 뇌구조, 기능의 종합적 이해를 증진하고 뇌공학 응용 및 뇌질병 퇴치를 위한 신경 생물학적 기반기술 확립
- 사업내용
 - 중추 신경계 재생 연구
 - 신경발생, 사멸 및 재생기작의 규명
 - 신경전달물질, 수용체 및 이온채널의 신호전달기작 이해
 - 신경계 가소성의 분자적 이해
 - 신경시스템의 통합조절 및 고등신경기능 이해
- 주관부처(협조부처): 과학기술부
- 총괄주관기관(책임자) : 경희대학교(오태환)
- 총 연구기간 : 1998.6 ~ 2008.3 (10년, 3+3+4년)
- 총 연구비 : 총 33,597백만원 (정부 33,597)

2) 추진실적

- 연구기간 : 2004 ~ 2005.12.31 (3단계1-2차년도)
- 연 구 비 : 총 4,000백만원
- 주요성과
- ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 뇌신경연구자의 상호이해증진, 목표지향 위주의 효율적 뇌연구 수행 및 총 191편(SCI 144편)의 우수논문 발표
 - 우수연구자를 위한 선택과 집중의 원칙에 의한 중점지원과 창의 적인 아이디어에 기반을 둔 연구지원 기반 구축
 - 신경계 분화유도, 사멸억제 기전연구 등 기초연구와 이를 통한 임상적용 활용기반 구축
 - 향후 뇌질환에 의한 뇌손상을 복구하는 기술 기반구축
 - 척추신경 외상 이후, 약물처리에 따른 치료 효과 재검증 및 메커 니즘 연구로 새로운 치료제 개발가능성과 임상활용 기반 제공

② 정량적 연구성과

(2005.12.31 기준)

특 허			논 문			기술이전		
さの	내 등록	국 츠의	외 등록	국내	국외	SCI	건수	기술료 (백만원)
돌전	0 7	色记	07					(백단면)
8	5	0	0	50	141	144	0	0

3) 2006년도 계획

- 목 표 : 뇌신경 구조와 기능 이해증진 및 뇌정보 처리 응용과 뇌질화 극복을 위한 신경생물학적 기반지식 구축
 - 뇌신경계의 구조와 기능의 종합적인 이해
 - 뇌질환 극복을 위한 생물학적 기반지식 구축 및 활용
 - 뇌신경생물학 분야의 고급 연구인력 양성(인프라 구축)
 - 연구업적의 국제화. 신경생물학의 새로운 실험모델 구축 및 활용

○ 연구내용

- 중추 신경계 재생 연구: 척수손상 후 minocycline과 estrogen의 임상응용 가능성 검증과 약물효능 메커니즘 규명연구
- 신경발생, 사멸 및 재생기작의 규명
- 신경신호 전달물질, 수용체 및 이온채널의 신호전달기작 이해
- 신경계 가소성의 분자적 이해
- 신경시스템의 통합조절 및 고등신경기능 이해
- 연구비 : 2,000백만원
- 주요 추진일정
 - 2006. 3 : 3단계 2차년도 진도관리
 - 2006. 4 : 3단계 3차년도 협약체결 및 사업 착수

4) 투자계획

(단위: 백만원)

구	분	'04년 이전	2005년	2006년	2007년 이후	합계
과학/	기술부	25,224	2,000	2,000	4,373	33,597
민	간	56	0	0	0	56
7	4	25,280	2,000	2,000	4,373	33,653

| 뇌혈관질환 한의학 기반연구사업 (나노바이오)

1) 사업개요

○ 사업목표 : 뇌혈관질환(Stroke, 중풍)의 한의학, 양의학, 생명공학

융합 시스템 개발

○ 사업내용:

- 뇌혈관질환의 한의학진단 표준화 및 과학화

- 뇌혈관질환의 위험도 진단 Tool 개발

- 뇌혈관질환의 한의학, 양의학, 생명공학 융합 시스템개발

○ 주관부처(협조부처): 과학기술부

○ 총괄주관기관(책임자): 한국한의학연구원(윤유식)

○ 총 연구기간 : 2005. 4 ~ 2014. 3

○ 총 연구비 : 총 330억원 (정부 300억원, 민간 30억원)

2) 추진실적(사업개시~2005년까지의 실적)

○ 연구기간 : 2005.04.01 ~ 2005.12.31

○ 연 구 비 : 총 15억원(정부 15억원)

○ 주요성과

① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)

- 한의학적 뇌혈관질환 진단 표준안 개발

- 뇌혈관질환 후유증개선 식약청 임상시험허가(IND) 획득

- 생물정보학을 활용하여 뇌혈관질환 관련 유전자 244개 도출

② 정량적 연구성과

(2005.12.31 기준)

	특허			논 문			기술이전	
국 * * * * * * * * * * * * * * * * * * *		국외		국내	국외	SCI	건수	기술료 (백만원)
출원	등록	출원	능독	, ,,	, ,	~	- ,	(백만원)
0	0	0	0	3	2	2	0	0

3) 2006년도 계획

○ 목 표 : 뇌혈관질환 예방 및 치료를 위한 융합기반 구축

○ 연구내용

- 뇌혈관질환의 한의학적 진단 표준화 및 과학화

- 뇌혈관질환 DB 및 유전자은행 구축

- 뇌혈관질환의 한의학, 양의학, 생명공학적 지표 연구

○ 연구비 : 총 15억원(정부 15억원)

○ 주요 추진일정

- 2006. 2 : 1단계 1차년도 진도관리

- 2006. 4:1단계 2차년도 협약체결 및 사업 착수

4) 투자계획

(단위:백만원)

구	분	'04년 이전	2005년	2006년	2007년 이후	합계
과학기	술부	_	1,500	1,500	27,000	30,000
민	간	_	0	0	3,000	3,000
净]	_	1,500	1,500	30,000	33,000

| 뇌영상용 초고자장(7.0T) MRI 기술개발사업 (나노바이오)

1) 사업개요

○ 사업목표 : 뇌 영상 연구용 초고자장(7.0T) MRI 시스템 연구 개발

및 관련 응용기술을 개발

○ 사업내용 : 총 3단계로 1단계는 설치 및 시험 가동 단계, 2단계는

7T MRI를 이용한 생체기능 영상 관련 연구 단계,

3단계는 PET-MRI 융합 시스템을 위한 기반 구축

시스템 개발 단계

○ 주관부처(협조부처): 과학기술부

○ 총괄주관기관(책임자): 가천의과대학교 (조장희)

○ 총 연구기간 : 2005. 3. ~ 2012. 2.

○ 총 연구비 : 총 170억원 (정부 70억원, 민간 100억원)

2) 추진실적(사업개시~2005년까지의 실적)

○ 연구기간 : 2005년

○ 연 구 비 : 총 50억원 (정부 10억원, 민간 40억원)

○ 주요성과

- ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 국내 최초 7T MRI 설치
 - 팬텀 영상 획득
 - 초고자장 전용 표면 코일 개발
 - 7T MRI용 영상 기법 개발
- ② 정량적 연구성과

(2005.12.31 기준)

	특허			논 문			기술이전	
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)
1	0	0	0	0	0	0	0	0

3) 2006년도 계획

○ 목 표 : 초고자장 MRI 시스템을 위한 하드웨어 및 소프트웨어 연구개발

○ 연구내용

- Gradient coil shim
- Multi-channel RF coil tuning
- Computing 시스템 구축 및 운영 기술 개발
- Multi-channel RF 신호처리 모델 정립
- Phase array coil 영상 재구성 기법 연구
- RF attenuation 모델 정립
- Susceptibility artifact correction 모델 정립
- Real time fMRI 소프트웨어 개발
- 연구비: 10억원
- 주요 추진일정
- 2006. 2 : 1단계 1차년도 진도관리
- 2006. 4:1단계 2차년도 협약체결 및 사업 착수

4) 투자계획

(단위:백만원)

구	분	'04년 이전	2005년	2006년	2007년 이후	합계
과학기	술부		1,000	1,000	5,000	7,000
민	간	4,000	4,000	200	1,800	10,000
계		4,000	5,000	1,200	6,800	17,000

기초뇌과학연구사업 (특정기초, SRC, 창의사업)

1) 사업개요

○ 총괄주관기관 : 한국과학재단

○ 총연구기간 : 1986 ~ 계속

○ 사업 내용

- 특정기초연구지원사업 : 학제간 공동연구(3인 이내)를 통한 창의 적인 기초연구 능력 배양 및 핵심원천기술 확보('86년부터 시행)
- 우수연구센터 : 산재한 우수연구인력을 특정 분야별로 조직화하여 연구활동에 필요한 제반 비용을 지원('98년부터 시행)
- 창의적연구진흥사업: 창조적인 원천기술개발과 우수연구리더 양성 및 출연기관 우수연구인력의 창의적 연구활동의 안정적 지원으로 연구전념 분위기 조성('97년부터 시행)

2) 추진실적

- 연구기간: 1986년 ~ 2005년
- 주요성과
 - ① 정성적 연구성과
 - 양전자 단층촬영을 이용한 대뇌청각피질의 기능에 관한 연구 (Nature, 2001)
 - 생체시계의 중요 요소 규명(Nature Neuroscience, 2003)
 - 의식차단 유전자가 뇌에서 통증을 억제한다는 사실 발견(Science, 2003)
 - 파킨슨 질병에 있어서 혈액 내 면역세포의 알파시누클레인 변화 가 세포의 자연사를 유도함을 규명(FASEB J. 2004)
 - 뇌경색 등 급성뇌손상질환에서 아연의 신경독성 기전 연구 (Nature Reviews Neuroscience, 2005)
 - 시냅스 형성 단백질에 관한 리뷰 논문 발표 (Nature Reviews Neuroscience, 2005).

② 정량적 연구성과

		특허				논문			기술이전	
사업명	국내		국외		국내	국외	SCI	건수	기술료 (백만원)	
	출원	등록	출원	등록	' '	,				
특정기초연구지원사업	3	0	2	0	98	141	78		0	
우수연구센터	4	1	3	0	72	306	304	1	0	
창의적연구진흥사업	16	0	15	1	63	243	190	61	0	
합계	23	1	20	1	233	690	572	62	0	

3) 2006년도 계획

○ 목 표: 각 사업별 계속과제 지원 및 신규과제 선정 추진

- 우수연구센터 : 아주대 뇌질환연구센터(김승업)에 대한 계속지원

- 창의적연구진흥사업 : 통증발현연구단, 치매정복연구단, 시냅스생 성연구단 등 5개 연구단 지원

- 특정기초연구사업: 19개 계속과제 및 15개 신규선정과제(3,042백만원)

○ 주요 추진일정

- 2006. 3월 : 특정기초연구지원사업 지원

- 2006. 3월 : 우수연구센터지원사업 지원

- 2006. 3월 : 창의적연구진흥사업 지원

4) 소요예산 조달계획

(단위: 백만원)

구 분	'03년 이전	2004년	2005년	2006(안)	합계
특정기초연구지원사업	10,917	2,005	2,102	3,042	18,066
우수연구센터	5,087	873	800	700	7,460
창의적연구진흥사업	18,960	5,097	5,065	3,090	32,212
계	34,964	7,975	7,967	6,832	57,738

<참고>

□ 창의연구단중 뇌신경과학 관련 사업단

선정연도	연구단명	유치기관	연구단장	2005년 (천원)	2006년 (천원)
2000	치매정복	서울대	서유헌	730,000	730,000
2001	세포 성장의 기능 유전체학적 이해	KAIST	정종경	680,000	680,000
2003	시냅스 생성 기전 연구	KAIST	김은준	600,000	600,000
2004	혈관/신경계 통합조절연구단	서울대	김규원	700,000	700,000
2006	통증발현 (PhaseII 재진입)	서울대	오우택	660,000	380,000

□ 우수연구센터중 뇌과학관련 센터

선정연도	연구단명	유치기관	연구단장	2005년	2006년
선정원포 	27 2 3 	파시기ゼ 	인기인경 	(천원)	(천원)
1998	뇌질환연구센터	아주대	김승업	800,000	700,000

□ 특정기초연구사업 Brain Research 과제 목록

책임자	과제명	소속대학	연구기간
유영석	망막혈관발생과 망막혈액장벽형성의 기전 - 저산소 의존성 또는 저산소 비의존성 신호전달에 의한 망막세포들의 상호 작용	서울대학교(연건)	2004~2007
묵인회	RAGE를 매개로 하는 Aβ 분자의 혈액-뇌 관문 이동 기전 규명 및 세포 내 신호전달 네트워크 규명	서울대학교(연건)	2004~2007
박진우	파킨슨병 모델에서 새로운 항산화효소들에 의한 생체 내 산화환원 조절	경북대학교	2004~2007
이원석	허혈성 뇌손상 후 회복 촉진 연구	부산대학교(의대)	2004~2007
전상학	축형성 유전자가 신경계세포의 정체성 및 분화에 미치는 영향	서울대학교(관악)	2004~2007

책임자	과제명	소속대학	연구기간
최석우	공포기억 코딩 및 디코딩의 기전 연구: 이온채널에서 행동까지	서울대학교(관악)	2004~2007
이종은	뇌혈관 질환 및 퇴행성 뇌질환시 신호전달기전 및 신경보호기전 연구	연세대학교	2004~2007
추영국	흰쥐의 허혈성 뇌손상 후 신경줄기세포이식에서 세포표면 당지질의 기능연구	원광대학교	2004~2007
정해영	뇌노화 억제를 위한 천연물 유래 새로운 PPAR agonist 발굴 및 분자기전 연구	부산대학교	2005~2008
박환태	성체 척수에서 netrin의 생리 및 병리적 기능	동아대학교(구덕)	2005~2007
진병관	프로트롬빈 프래그먼트-2에 의한 중추 신경세포 사멸 및 그 기전 연구	아주대학교	2005~2008
정민환	유전자 조작 생쥐를 이용한 해마 신경계의 정보표상 기전 연구: 실험 및 모델링	아주대학교	2005~2008
이성룡	Matrix metalloproteinase에 의한 손상기전에 기반을 둔 뇌졸중 치료기법 연구	계명대학교(성서)	2005~2008
박해정	통합적 뇌기능 영상을 이용한 맹인의 뇌 신경망 가소성 및 신경 연결성 연구	연세대학교	2005~2008
배애님	5-HT6 및 5-HT7 세로토닌 수용체 선택적 조절 물질 탐색 연구	한국과학기술연구 원	2005~2008
정낙신	새로운 아데노신 A3 수용체 리간드의 개발 및 허혈성 뇌졸중 치료제로의 응용	이화여자대학교	2005~2008
박승준	시상하부에서 이루어지는 소화관 호르몬의 식욕조절 기전에 관한 연구	경희대학교	2005~2008
사공준	환경오염이 소아 인지기능에 미치는 영향 평가를 위한 소아용 컴퓨터 신경행동검사 개발 및 정상치 데이터 베이스의 구축	영남대학교	2005~2008
강태천	미성숙뇌에서 pyridoxal-5-phosphate (PLP) 기능 및 간질발생과정의 PLP paradox와 PLP phosphatase의 연관성 규명	한림대학교	2005~2008
한병희	바이플라보노이드 유도체를 이용한 새로운 허혈성 뇌질환 치료제 개발	서울대학교	2006~2009
안지인	NGF가 유도하는 신경세포의 생존과 분화에 있어 Nuclear Akt의 상호작용물질발굴과 그 조절기전연구	성균관대학교	2006~2009
김만호	배아줄기세포의 GABA신경분화기술을 이용한 헌팅톤질환모델의 세포이식법 개발	서울대학교	2006~2009
이병주	뇌에서 스트레스와 전사조절인자에 의한 섭식조절 기전연구	울산대학교	2006~2009
석경호	염증성 산화효소에 의한 신경조직 손상기전 규명 및 조절 전략개발	경북대학교	2006~2009
장일성	착수 후각의 내인성 신경회로에서 흥분성/억제성 신경전달의 가소성에 대한 통합적 연구	경북대학교	2006~2009

책임자	과제명	소속대학	연구기간
박명규	신경세포에서 Endoplasmic Reticulum 칼슘신호의 기능적 역할과 병리적 기전 연구	성균관대학교	2006~2009
한평림	알츠하이머성 치매의 뇌신경계에서 혈전용해단백질의 신경세포 보호효과 연구	이화여자대학교	2006~2009
하정실	parkin 유전자 돌연변이에 의한 파킨슨 질환 유발 경로추적 및 insulin signaling pathway가 미치는 영향 분석	세종대학교	2006~2009
김대수	시상핵의 운동 스윗치 조절에 관한 연구	한국과학기술원	2006~2011
장성호	Nano-Imaging Probes를 이용한 신경세포의 기능분석연구	광주과학기술원	2006~2009
박철승	벤조퓨로인돌계 포타슘 채널 활성물질을 이용한 새로운 신경세포 손상 억제제의 개발	광주과학기술원	2006~2009
김상정	소뇌 퍼킨지 세포의 신경 가소성에 대한 transient receptor potential channel의 기능	서울대학교	2006~2009
민선식	미교아세포 활성화에 의한 시냅스 가소성 변화 및 기억 장애에 관한 연구	을지의과대학교	2006~2009
노재규	신경줄기세포의 면역학적 특성 규명과 염증조절기능을 통한 신경줄기세포이식 장벽 극복 연구	서울대학교	2006~2009

국가지정연구실사업

1) 사업개요

○ 총괄주관기관(책임자) : 한국과학재단

○ 총 연구기간 : 1999 ~ 계속

○ 총 연구비 : 총 6,276억원(정부 5,826억원)

○ 최종목표 : 국가경쟁력의 요체가 될 핵심기술(core technology)

분야의 우수연구실을 발굴・육성

○ 사업내용 : 기술의 기반성·핵심성을 유지하고 있는 소규모 Lab을 2억~3억원 규모로 5년간 지원

- 뇌졸중 및 치매의 중재요법연구실, 시과학연구실, 단백질 치료연구실 등 5개 연구실 연구종료(1999~2004)
- 신경신호조절연구실, 가상현실 정신치료연구실 등 2개 연구실 연구종료(2000~2005)
- 신경생물학연구실, 기간세포연구실, 세포생리 연구실(일부 뇌연구 수행), 청각 통각 연구실, 뇌 전사 네트워크 연구실, 인공효소연구실 등 6개 연구실 지원중(2005.12.31 기준)
- 2006년도 신규과제로 "아연의 신경독성기전을 바탕을 둔 신경세 포 보호기술(울산대 고재영)" 선정

<2006년도 뇌연구관련 NRL 과제 추진 현황>

선정연도	연구실명(연구과제명)	유치기관	연구책임 자	2005년 (백만원)	2006년
0001	1 J J T S A 7 J	3) A 3)	,		
2001	신경생물학연구실	서울대	강봉균	220	1
2001	기간세포연구실	한양대	이상훈	221	_
2004	세포생리 연구실	서울대	호원경	216	216
2005	청각 통각 연구실	전남대	김창수	198	198
2005	뇌 전사 네트워크 연구실	고려대	김현	230	220
2005	인공효소연구실(뇌연구?)	서울대	서정헌	220	220
2006	뇌신경손상기전연구실	울산대	고재영	-	200

2) 사업실적

○ 연구기간 : 1999 ~ 2005

○ 연 구 비 : 총 10,940백만원(정부10,948백만원)

○ 주요성과

① 정성적 연구성과

- Cyclin-dependent kinase 5의 신경세포의 분화 및 재생과정 기전 규명(2004)
- 생체리듬을 조절하는 멜라토닌을 합성하는 과정에서 N-acetyl transferase의 활성이 protein kinase A와 protein kinase C에 의해 번역후 조절기전을 규명(2004)
- 뇌하수체 후엽에서 단일 axon terminal을 분리 성공. 이 axon terminal의 Na/Ca exchanger가 망막의 rod cell 에만 존재한다고 알려진 NCKX (K-dependent Na/Ca exchanger)라는 사실을 세계 최초로 밝힘(J Neurosci 2005)
- ② 정량적 연구성과

(2004.12.31 기준)

특정				논 문			기술	·이전
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)
61	16	15	3	87	215	231	16	

3) 2006년도 계획

○ 목 표: 세포생리 연구실(일부 뇌연구 수행), 청각 통각 연구실, 뇌 전사 네트워크 연구실 등 4개 연구실을 계속지원하고, 신 규로 뇌신경손상기전연구실 추가 지원

○ 주요 추진일정

- 2006. 1~3월 : 신규신청과제 공고, 평가 및 선정

- 2006. 5~6월 : 2004년 선정과제 단계평가 및 2001년 선정과제 최종평가

4) 소요예산 조달계획

(단위: 백만원)

구 분	'03 이전	2004	2005	2006	2007년(미정)	합계
과기부	8,727	908	1,305	1,054	1,200	13,194
민간	_	_	-	_	_	
계	8,727	908	1,305	1,054	1,200	13,194

나. 보건복지부

- □ 2006년도 중점 추진방향
 - 연구성과의 임상적용과 진단·치료에의 응용연구에 집중지원
 - 퇴행성 뇌질환과 정신질환연구의 응용 연구
 - 뇌기능 향상 및 퇴행성 뇌질환의 치료제 개발
 - 정신질환 및 약물중독 치료제 개발
 - 퇴행성뇌질환, 정신질환 및 약물중독에 대한 임상 연구
 - 퇴행성뇌질환 동물 모델 구축
 - 치료기술 개발을 위한 실용화 연구
 - 허혈성 뇌졸중 환자의 진단 및 치료법 개발
 - 뇌, 척수 손상 모델에서 중추 신경 재생을 위한 줄기 세포를 이용한 다면적 치료 기술 개발
 - 치매치료제 AAD2004 전임상·임상 1상 연구 지원
 - 기초과학의 성과를 기반으로 한 환자중심·질병중심의 중개 연구 강화 (Bench to Bedside)
 - 신경계통질환, 정신 및 행동장애 질환에 대한 중개연구 (translational research) 육성

□ 투자 실적·계획 총괄표

(단위: 백만원)

사 업 명	사업기간	2005년	2006년 계획	주관기관
• 뇌의약학연구개발사업	'98 ~ '07	3,158	3,482	보건복지부/한국보건산업진흥원
• 치매치료제AAD2004개발	'06 ~ '08	_	6,700	보건복지부/한국보건산업진흥원

□ 향후 추진계획

- 뇌질환 진단·치료기술의 실용화와 임상적용 촉진
 - 퇴행성뇌질환, 정신질환, 약물중독 치료제 개발을 위한 응용연구, 중개연구의 활성화
 - 퇴행성뇌질환 및 정신질환 임상연구 활성화

□ 세부 사업별 추진계획

뇌의약학 연구개발사업

1) 사업개요

- 사업목표 : 뇌·신경정신질환의 획기적인 예방 및 치료기술
 - 개발을 통하여 국민건강 증진에 기여
- 사업내용 : 보건복지부가 주관하여 보건의료기술진흥사업으로
 - 뇌의약학연구개발사업 추진
 - 특정센터연구지원 : 알쯔하이머 치매를 비롯한 퇴행성 신경질 환과 정신분열증, 우울증 등 대표적인 정신질환에 지원
 - 자유공모과제 : 중점공동연구, 중개연구 과제 등 지원
- 주관부처 : 보건복지부
- 총괄주관기관 : 한국보건산업진흥원, 국립보건연구원 뇌의약학연구센터
- 총 연구기간 : 1998년 ~ 계속
- 총 연구비 : 총 1,372억원(복지부 917억원, 과기부 55억원, 민간 400억원)

2) 추진실적

- 연구기간: 1998년 ~ 2005년
- 연 구 비 : 총 29,416백만원 (정부 28,339백만원, 민간 1,077백만원)
- 주요성과
- ① 정성적 연구성과
 - 정신분열병에서 뇌섬엽의 모양변형에 관한 연구 (Neuroimage 2006)
 - 양전자방출촬영 영상의 피질표면에 기초한 분석: 정신분열병에서 측정된 대사이상의 피질 구조 이상에 의한 영향(Neuroimage 2006)
 - 알츠하이머환자에서의 림프구 활성 및 성장 저하(Biol. Psychiatry 2006)
 - 새로운 아밀로이드 펩타이드 분해 효소 발견(국내특허출원완료, 미국특허출원 2005)
 - 알츠하이머병의 주요 원인유전자인 Presenilin-1의 작용메카니즘 규명(J. Biol. Chem. 2005)

- 정신분열증 관여 도파민 D3 수용체의 새로운 신호전달기전의 규명(J. Biol. Chem. 2005)
- 해면정맥동경막동정맥루에 분석 및 발현증상 및 정맥유출형태 와의 연관성 규명(Storke 2005)
- 신경교세포에서 특정유전자에 의한 염증성 싸이토카인과 케모 카인의 발현 조절 기전규명 (Journal of Neuroimmunology, 2004)
- 알츠하이머 치매의 원인물질로 알려진 amyloid beta peptide, tau의 독성기전 및 신호전달계 규명 (Molecular Cell, Mole Cell Neuroscience, 2003 등 다수)
- ② 정량적 연구성과

(2005.12.31 기준)

특허				논 문			기술이전	
국 출원	국내 국외 등록 출원 등록		국내	국외	SCI	건수	기술료 (백만원)	
21	5	2	1	633	588	707	-	-

* 98년부터 05년까지 누적 특허, 논문 성과임

3) 2006년도 계획

- 목 표 : 2004년부터 시작된 3단계 사업의 목표인 "뇌질환연구의 진단 치료에의 응용 및 선진화"를 위한 연구기반강화
- 연구내용
 - 퇴행성 뇌질환과 정신질환연구의 응용 연구
 - 뇌질환 치료기술 개발을 위한 실용화 연구
 - 신경계질환, 정신 및 행동장애 질환 중개연구
- 연구비 : 3,482백만원(정부)
- 주요 추진일정
 - '06. 1. : 2006년도 사업 시행계획 공고
 - '06. 1~2 : 신규과제 접수
 - '06. 3~4' 신규과제 선정 및 평가, 계속과제의 중간 연차실적 계획서 접수 및 평가

4) 투자계획

(단위:백만원)

	구 분	'04년 이전	2005	2006	2007년 이후	합계
정	보건복지부	19,692	3,158	3,482	65,379	91,711
부	과학기술부	5,489	-	_	_	5,489
민	. 간	905	172	173	38,750	40,000
	계	26,086	3,330	3,655	104,129	137,200

치매치료제 AAD2004 개발

1) 사업개요

- 사업목표 : 국가 대형실용화사업 과제로 선정된 AAD2004 물 질이 뇌질환 치매치료제로 실용화될 수 있도록 전임상 및 임상 1상시험의 성공적 완료
- 사업내용 : 보건복지부가 주관하여 보건의료기술진흥사업으로 뇌의약학연구개발사업 추진
 - (주)뉴로테크를 사업자로 선정, 치료제 개발에 필요한 전임상· 임상 1상 연구를 지원
- 주관부처 : 보건복지부
- 총괄주관기관 : 한국보건산업진흥원, (주)뉴로테크
- 총 연구기간 : 2006년 ~ 2008년
- 총 연구비 : 총 200억(정부출연금·투자 120억, 민간부담 80억)

2) 추진실적

○ 해당사항 없음.

3) 2006년도 계획

○ 목 표 : AAD2004의 약효분석 등 전임상 연구

○ 연구내용

- AAD2004 약물 효능 및 기전 연구

- 약물의 안전성 및 기전 위탁연구

- 비임상 독성 시험

○ 연구비 : 6,700백만원(정부)

○ 주요 추진일정

- 2006. 5. : 연구과제 협약 체결 완료

4) 투자계획

(단위 : 백만원)

	구 분	'04년 이전	2005	2006	2007년 이후	합계
정부	보건복지부	_	-	6,700	5,300	12,000
민	간	_	_	2,300	5,700	8,000
	계	_	-	9,000	11,000	20,000

다

교육인적자원부

□ 중점 추진 방향

- 뇌연구의 실세계 응용을 위한 전문인력 양성
 - 뇌과학 기초학문분야 지원에 중점을 둔 지속적인 지원으로 연구 기반 조성 및 뇌과학 기초지원 증대를 통한 전문인력 양성 확대
 - · 학술연구조성사업의 각 단위사업을 통하여 일반공모 후 연구과제 지원

□ 투자 실적·계획 총괄표

사 업 명	사업기간	2005년	2006년 계획	주관기관
• 기초과학학술연구조성사업	'98~계속	2,848	3,000	교육부/학술진흥재단

□ 세부추진계획

기초과학학술연구조성사업 중 신진교수연구지원, 기초연구 과제지원, 중점연구소사업 등 일부

1) 사업개요

○ 총괄주관기관(책임자): 한국학술진흥재단

○ 총 연구기간 : '98 ~ 계속

○ 총 연구비 : 342억원(정부 342억원)

○ 최종목표 : 뇌과학 기초학문분야 지원에 중점을 둔 지속적인

지원으로 연구기반 조성 및 뇌과학 기초지원 증대를

통한 전문인력 양성 확대

○ 사업내용 : 기초과학학술연구조성사업의 단위사업에서 선정과제로 추진

- 신진교수연구지원: 신진교수들의 연구 참여기회 확대로 창의적 연구의욕을 고취하고 연구역량을 극대화하며, 국제적 연구 역량의 행상 도모
- 기초연구과제지원 : 과학기술분야 우수연구자의 창의적 연구과제를 다양한 형태로 지원하여 연구의 질을 국제적 수준으로 향상
- 중점연구소지원 : 연구소의 전문화, 특성화를 통하여 대학연구소 운영의 내실화와 연구역량 극대화

2) 추진실적

○ 연구기간 : '98년 ~ 2005년

○ 연 구 비 : 총 16.947 백만원(정부 16.947 백만원)

○ 주요성과

① 정성적 연구성과

- 뇌허혈 후 저빌 해마의 CA1영역에서 platelet endothelial cell adhesion molecule-1의 경시적 변화 확인(Brain Res., 2005)

- Cag-3 유전자 구조 및 뇌 조직 분포 연구(Mol. Cells, 2005)
- 지구성 운동이 흰쥐 뇌에서 음식섭취 관련 신경전달물질의 발현 에 미치는 영향(Neuroscience Letters, 2003)
- 유한요소 모델을 이용한 외상성 뇌손상의 메카니즘 해석(J. Mechanical Science & Technology, 2005)
- 넙치 뇌신경인자 BDNF(brain-derived neurotrophic factor)의 클로 닝과 발현(J. Microbiology and Biotechnology, 2005)
- 한글단어와 그림에 대한 대뇌 활성화 연구: fMRI연구(J. Neuroscience, 2005)
- Biodegradable polymer releasing antibiotic developed for drainage catheter of cerebrospinal fluid: In vitro results(J. Korean Medical Science, 2005)

② 정량적 연구성과

(2005.12.31 기준)

	특 허				논 문 기술이전			
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)
				498	180	113		

3) 2006년도 계획

- 목 표 : 뇌연구의 실세계 응용 및 선진화를 위한 뇌과학 기초
 연구분야의 연구기반 조성 및 뇌과학 기초지원 증대를
 통한 전문인력양성 확대
- 연구비 : 2,500백만원
- 주요 추진일정
 - 학술연구조성사업의 상반기, 하반기에 선정 및 지원

4) 소요예산 조달계획

구 분	'02년 이전	2003	2004	2005년	2006년 이후	합계
교육인적자원부	9,599	2,000	2,500	2,848	17,253	34,200
민 간	_	-	_			-
계	9,599	2,000	2,500	2,848	17,253	34,200

5) 향후 추진계획

- 기초연구과제 기초과학 상반기/하반기 신청 및 선정
- 문제해결형(석사급연구원) 상반기 신청 및 선정
- 지역대학우수과학자 상반기 신청 및 선정
- 우수학자 기초과학 하반기 신청 및 선정

라. 산업자원부

□ 중점추진 방향

- 수퍼지능칩 개발 환경 및 활용 시제품 제작
- 진화 신경망에 의한 SHC 시스템 구현
- EHW Description language 및 Development tool 검증
- 바이오 정보처리를 이용한 질병 진단 시제품 설계
- 진단/응용을 위한 DNA 컴퓨팅 알고리즘 개선
- 인간지능 모방 시스템(인공두뇌)의 성능향상
- 제1차 인공두뇌 기본모형의 성능 검증 및 향상
 - 인간의 시각. 청각. 인지. 행위 기능의 융합
 - 인공두뇌를 이용한 인공비서(업무도우미) 성능 검증 및 향상
- 뇌연구 성과 요소기술의 확보 및 활용
 - 인간의 두뇌기능의 부문별 연구성과로 부터 지적재산(특허 및 IP) 확보
 - 뇌정보처리 기반 인간기능 요소기술의 특허출원 장려
 - 뇌정보처리 모방 칩 및 시스템 인터페이스 기술 확보

□ 투자 실적·계획 총괄표

사 업 명	사업기간	2005실적	2006계획	주관기관
●슈퍼지능칩 및 응용기술개발	2000.12~2010.8	3,386	3,386	인하대학교
●뇌신경정보학 연구개발	1998.11~2008.3	2,400	3,000	한국과학기술원

□ 세부 사업별 추진계획

수퍼지능칩 및 응용기술개발사업

1) 사업개요

- 사업목표 : 지능성 발현을 위한 진화적응 복합 칩 개발 / 지능형 생물 처리 시스템 개발 / Intelligent & interactive module 개발
- 사업내용 : SoC 기반의 진화 적응 복합 칩 개발 및 구현 /

 DNA 컴퓨팅 기반의 질병 진단 칩 개발/

 Intelligent & interactive module 상용기술개발 및 상품화
- 주관부처(협조부처): 산업자원부
- 총괄주관기관(책임자) : 인하대학교 (이종호)
- 총 연구기간 : 2000. 12 ~ 2010. 8
- 총 연구비 : 총 361억원 (정부 237억원, 민간 124억원)
- 2) 추진실적(사업개시~2005년까지의 실적 작성)
 - 연구기간 : 사업개시년 ~ 2005년
 - 연 구 비 : 총 16,138백만원 (정부 11,740백만원, 민간 4,398백만원)
 - 주요성과
 - ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 고장 복구 가능한 회로의 진화 기법 개발 (IEICE Trans., 2000)
 - 종분화 신경망의 checkers strategy 진화 기법 개발 (LNCS, 2002)
 - 셀룰라 오토마타 기반 신경망 제어기의 진화기법 개발 (J. 3D Images, 2002)
 - DNA 마이크로어레이의 염색체 발현 양상의 데이터 마이닝기법 개발 (J. Software Eng. and Knowledge Eng., 2003)
 - 대규모 확장이 가능한 범용 신경망 연산기 : ERNIE (전자공학회, 2003)
 - Concurrent Support Vector Machine Processor for Disease

Diagnosis (ICONIP 2004)

- Using Reconfigurable Architecture-Based Intrinsic
 Incremental Evolution to Evolve a Character Classification
 System (LNAI 3801, CIS 2005, 2005)
- ② 정량적 연구성과

(2005.12.31 기준)

	특	허			논 문		기술	날이전
국 출원	·내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)
11	9	0	0	189	153	66		

3) 2006년도 계획

- 목 표: 가변구조 지능형 반도체 / 휴대용 건강 진단 기기 / 지능형 미디어 플레이어
- 연구내용
 - 가변구조 반도체 칩 제작
 - DNA 컴퓨팅용 칩 제작
- 연구비 : 3,386 백만원
- 주요 추진일정
 - '06. 1~8 : DM-EHW, GAP, NN, MCU 통합 및 검증,

Aptamer chip 개발, 핵심어 음성인식 ASIC 개발 등

- '06. 9~12 : 독립형 통합 시스템 검증, DNA 컴퓨팅 칩 제작, SIC 구조에 적합한 지능형 환경인식 모듈 개발 등

4) 투자계획

구 분	<u>.</u>	'04년 이전	2005년	2006년	2007년 이후	합계
산업자원]부	9,415	2,325	2,325	9,675	23,740
민	간	3,337	1,061	1,061	6,939	12,398
계		12,752	3,386	3,386	16,614	36,138

뇌신경정보학 연구개발사업

1) 사업개요

○ 사업목표 : 뇌정보처리 메카니즘에 기반하여 인간과 같이 보고 (인공시각), 듣고(인공청각), 생각하고(인지추론), 행동하는(인간 행동) 인간기능의 지식정보처리시스템(인공두뇌) 개발을 위한 핵심기반기술 확보

○ 사업내용:

- 인간 시청각 및 인지기능의 과학적 이해 및 공학적 모델 개발
- 인공두뇌(Digital Brain) 및 이를 이용한 응용시스템(업무도우미) 기본모형 개발
- 뇌신호 측정기술 개발 및 인지신경과학 실험 인프라 구축
- 주관부처(협조부처): 산업자원부
- 총괄주관기관(책임자): 한국과학기술원 뇌과학연구센터(이수영)
- 총 연구기간 : 1998년 11월 ~ 2008년 3월 (9년 5개월)
- 총 연구비 : 총 29,536백만원 (정부 29,481백만원, 민간 55백만원)

2) 추진실적(사업개시~2005년까지의 실적 작성)

- 연구기간: 1998년 ~ 2005년
- 연 구 비 : 총 23,536백만원 (정부 23,481백만원, 민간 55백만원)
- 주요성과
- ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 인간의 선택적 주의집중을 모방하여 잡음왜곡 및 중첩 패턴의 인식 (1999년/2002년 논문; 미국특허 등록)
 - 인간 청각계를 모방하여 2개의 마이크에 2개의 신호가 반향을 가지고 혼합될 때 각각을 분리해 내는 알고리즘 및 칩 (FPGA) 개발 (2003년 IEEE 국제학술회의 최우수논문상)
 - 인간청각모델에 기반하여 실세계 잡음 하의 음성인식칩 (1999년/2002년 논문; 2002년 실용화 및 기술이전)
 - 고성능 시각칩의 암전류 특성을 개선한 화소구조 개발 (2005년 논문)

- 인간의 상향식 및 하향식 주의집중의 통합모델을 이용한 얼굴인식 (2004년/2005년 논문)
- 인간의 동적시각경로에 따른 비디오 동특징의 자동추출 및 음 성-비디오 융합에 의한 음성인식 기법 (2005년 논문)
- 다수 에이전트의 협동행동 모델 개발 (2002년 논문)
- 도메인 지식을 활용한 종분화 진화기법 기반의 인공비서 의사 결정모듈 생성기술 (2005년 논문)
- 제1차 인공두뇌 및 인공비서(업무도우미) 기본모형 개발 (2006년 3월)
- 연구전용 고자장(3T) 기능형 자기공명영상(fMRI) 시스템 가동 (2001년 7월)
- 기능형 자기공명영상(fMRI) 및 뇌파(EEG)의 동시측정 시스템 구축 (2003년 2월)
- ② 정량적 연구성과

(2005.12.31 기준)

	특 허				논 문			기술이전	
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)	
64	17	18	4	423	538	424	2	22	

※ 학술회의 발표를 제외한 학술논문만 포함하였으며, 이와 별도로 SCI-E 에 포함되는 LNCS (Lecture Notes on Computer Science)/LNAI (Lecture Notes on Artificial Intelligence)에 논문 107편 발표.

3) 2006년도 계획

○목 표:

- 제1차 인공두뇌 기본모형 및 인공비서 성능 검증 및 향상
- 논문 120편 (국제논문지/SCI(-E) 40편, 국내논문지 30편, 학술회의 50편)
- 특허출원 10편
- 연구내용

- 제1차 인공두뇌 기본모형의 성능향상 방안 분석
- 음성 신호의 반향효과를 제거하는 알고리즘 개발
- 청신경계에 기초한 음원 방향탐지 칩 설계 (사무실 반향에서 10dB 잡음 3 meter 앞 화자의 정확도 2도)
- 입술모양정보를 이용한 음성인식 성능향상 모델개발 (15dB 잡음하 인식률 10% 상승)
- 인간과 상호작용을 통한 실세계 대상검출 및 인지학습 기능을 갖는 기계자아 발전모델 개발
- 고수준 동작이 가능한 인공비서 기본모형 설계 (인공비서 기능별 구현; 예: 전자메일, 일정관리, 문서초안)
- 뇌기능 영상 시스템 운영 및 msMRI와 NIRS 성능향상 (msMRI 해상도 : 0.2초, 1∼2mm)
- 연구비 : 3,000백만원
- 주요 추진일정

- 2006.4. 3단계 2차년도 평가 및 3차년도 협약체결

- 2006.4~7 제1차 인공두뇌 성능검증 및 분석

- 2006.8~11 인공두뇌 성능향상

- 2006.12~2007. 3 업무도우미 성능향상

4) 투자계획

구	분	'04년 이전	2005년	2006년	2007년 이후	합계
과힉기 산업기	술부/ 사원부	21,081	2,400	3,000	3,000	29,481
민	간	55				55
	계	21,136	2,400	3,000	3,000	29,536

마. 정부출연기관 (기관고유사업)

□ 중점추진 방향

- 기초기술연구회(한국과학기술연구원)
 - Chemoinformatics 연구
 - · 뇌질환 치료제 개발을 위한 신규 표적단백질 발굴, 뇌질환 조절 물질 탐색 및 뇌질환 조절물질 효능평가 연구
- 복합 기술을 이용한 뇌 기능 연구
 - · 유전자 변이 생쥐 제작, 의식·무의식·학습·기억, 수면조절 등 인지기능 및 인지기능 분석기술 개발
- 공공기술연구회(한국표준과학연구원)
- 생체신호 측정 및 분석기술개발(전문연구사업)
 - · 뇌기능 검사 및 뇌질환 정밀 진단에 활용할 300채널 벡터뇌자도 측정장치를 개발하고 이를 활용하여 뇌기능을 연구할 수 있는 분석 기술 개발

□ 총괄

사 업 명	사업기간	2005실적	2006계획	주관기관
•Chemoinformatics 연구	2002. 1.1~2012.12.31	5,500	4,315	한국과학기술연구원
•복합 기술을 이용한 뇌 기능 연구	2005. 11~2015.12	450	1,236	한국과학기술연구원
●뇌자도 기술개발	2001.1.1~2005.12.31	148	-	한국표준과학연구원
●생체신호 측정 및 분석기술 개발 (전문연구사업)	2005.12.1~2014.12.31	750	1,000 (50)	한국표준과학연구원
●의료기반 VR Therapy기술 개발*	2000.1.1~2005.12.31	1,069	-	한국전자통신연구원
● 생체화학분자개발사업*	2003.1.1~2005.12.31	590 (460)	-	한국화학연구원
총 계		8,507	6,551	

□ 기초기술연구회(한국과학기술연구원) 세부 연구개발사업

○ 사업별 세부추진계획

Chemoinformatics 연구

1) 사업개요

- 주관부처(협조부처): 기초기술연구회 한국과학기술연구원
- 총괄주관기관(책임자): 한국과학기술연구원 (신희섭)
- 총 연구기간: 2002.01.01~2012.12.31
- 총 연구비 : 총 500 억원 (정부 500 억원, 민간 0)
- 최종목표 : 신규 뇌질환치료제 개발을 위한 신약개발의 모델 시스템 구축
 - 첨단 생물학적 방법을 이용하여 뇌질환 치료제의 신규 표적 발굴.
 - 신규 표적을 대상으로 하여 뇌질환 치료 후보물질 도출
- 사업내용
 - 뇌질환 신규 표적단백질 발굴연구
 - 뇌질환 조절물질 탐색연구
 - 뇌질환 조절물질 효능평가연구

2) 사업실적

- 연구기간 : 2002.1.1 ~ 2005.12.31
- 연 구 비 : 총 211.7 억원 (정부 211.7 억원, 민간 0)
- 주요성과
 - ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - NCX-2 유전자의 기능 규명(Neuron, 2003)
 - 통증억제 유전자 확인(Science, 2003)
 - T-형 활성 세포주 제작 및 고속검색 체계 구축 (특허 출원)
 - DEBIO PHARM과 MTA 체결

② 정량적 연구성과

(2005.12.31 기준)

특 허					논 문			기술이전	
국 출원	내 등록	국 출원	외 등록	국내	국외	SCI	건수	기술료 (백만원)	
16	8	7	1	5	44	47			

3) 2006년도 계획

- 목 표 : 신규 뇌질환치료제 개발을 위한 신약개발의 모델 시스 템 구축
- 연구비 : 43.15 억원
- 주요 연구내용
 - 뇌질환 신규 표적 단백질 발굴연구
 - 적중벡터 및 배아간세포주 확보, 적중 변이생쥐 생산
 - · 국소빈혈 조건하에서 뇌신경세포 사멸에서 NCX-2 유전자의 중요성 관한 연구
 - · RGS관련 단백질의 구조·기능연구
 - · Channel 및 뇌질환 표적 단백질의 구조·기능연구
 - 뇌질화 조절물질 탐색연구
 - 가상검색 기술을 이용한 신규물질 디자인
 - · 새로운 scaffold와 building block을 갖는 lead-like 화합물 도출
 - · Focused library의 구축 및 선도물질 도출
 - · 선도화합물의 구조 최적화 및 ADME 예측
 - · 선도화합물의 채널 간 선택성(LVA와 HVA 칼슘채널 간, 그리고 T-형 채널 G, H, I 간) 및 DMPK 연구
 - · 심혈관계에 발현하는 칼슘채널과 신경세포에 발현하는 칼슘채널에 대한 차단성 규명
 - 뇌질환 조절물질 효능평가연구
 - · T-형 채널들의 고속검색 조건 최적화

- · 일반통증에 대한 in vivo 및 행동검사 시스템 확립
- · 신경통증에 대한 in vivo 및 행동검사 시스템 확립
- · 선도화합물의 BBB 투과 특성 연구, In vivo PK 평가
- · 알츠하이머병, 파킨슨병 등 작용점 미확인 뇌질환 조절물질의 표적 확인 및 검색법 확립

4) 소요예산 조달계획

구 분	'04년이전	2005	2006	2007년 이후	합계
Chemoinformatics 연구	15,670	5,500	4,315	24,515	50,000

복합 기술을 이용한 뇌 기능 연구

1) 사업개요

- 주관부처(협조부처): 기초기술연구회 한국과학기술연구원
- 총괄주관기관(책임자): 한국과학기술연구원 (신희섭)
- 총 연구기간 : 2005.11.01~2015.12.31
- 총 연구비 : 총 150 억원 (정부 150 억원 , 민간 0)
- 최종목표 : 복합기술을 이용한 인지기능 원리 규명
 - 유전자 돌연변이 및 유전자 기능 억제 생쥐 제작과 분석을 통하여 뇌에서의 인지기능 원리를 규명, 다양한 뇌기능 분석기술과 치료 전략 구축
 - 유전자 변형생쥐를 제작하여 전기생리학 분석시스템, 프로티오 믹스, 슈퍼컴퓨터를 이용한 분석, NIR tomography, MEMS, High throughput screening system, 행동통합분석시스템을 이용 하여 인지기능 원리규명, 분석기술 개발
- 사업내용
 - KIST보유기술의 융복합을 통한 인지기능 연구
 - 신경과학 센터: 새로운 유전자 변이 생쥐 개발, 뇌 활동 측정 기술의 무선시스템화, 새로운 Optical Neuroimaging 기술 개발, 전기생리학의 신호처리 및 수치해석 적용
 - · 마이크로 시스템연구센터 : Micro Mechatronics를 통한 Neuron, Signal Recording 자동화 시스템 개발, BioMEMS를 통한 신경세포 모니터 칩 개발
 - · 나노/ 화학연구센터 : Smart Probe 개발, Q-dot 응용 기술 개발

2) 사업실적(사업개시~2005년까지의 실적 작성)

- 연구기간 : 2005.11.1 ~ 2006.4.30
- 연구비:총 450,000 천원(정부 450,000 천원, 민간 0)
- 주요성과
 - ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)
 - 해마의 쎄타파의 차이로 인한 행동학적인 차이 (PNAS, 2005)

② 정량적 연구성과

(2005.12.31 기준)

	특	허			논 문		기술	이전
국	내	국	외	국내	국외	SCI	건수	기술료 (백만원)
출원	등록	출원	등록	7 71	79	501	עו יעו	(백만원)
1					7	7		

3) 2006년도 계획

○ 목 표 : 복합기술을 이용한 뇌에서의 인지기능 원리를 규명 및 다양한 뇌기능 분석기술과 치료 전략을 구축

○ 연구비: 1,236,000 천원

- 주요 추진내용
 - 유전자 변이(RGS4, 7,11, Na/Ca exchanger-2(NCX-2)등) 생쥐 제작
 - · N-타입 이온 통로 alB null 돌연변이 생쥐 개발
 - · RNA 간섭현상 (RNAi)을 이용한 뇌기능 분석연구
 - 인지 기능 연구
 - · T-타입 칼슘 채널 alH와 alI: 압상스 간질 유도 약물(GABA 성 길항제, 효능제) 투여 후 EEG 간질파 및 간질 행동 관찰, 측정 및 분석을 통한 의식 조절에 관한 데이터 베이스 구축
 - · Amygdala와 Striatum에서의 분자적 기작 규명과 조절인자의 신약개발 가능성 조사 등
 - 인지기능 분석 기술 개발
 - · BioMEMS를 통한 신경세포 모니터 칩 설계 및 제작
 - 세포칩을 통한 신경세포 분석
 - · 생체 뇌신호 전기 자극/추출을 위한 Wired type의 초정밀 전 극 이동 시스템 구성요소 제작 및 검증, 시작품 제작

4) 소요예산 조달계획

구 분	2005년	2006년	2007년 이후	합계
복합 기술을 이용한 뇌 기능 연구	450	1,236	13,314	15,000

□ 공공기술연구회(한국표준과학연구원) 세부사업추진계획

뇌자도 원천 기술개발 (NRL)

1) 사업개요

- 사업목표 : 뇌자도 측정기술, 전류원 국지화기술, 뇌기능 지도화 기술개발
- 사업내용 : 뇌자도 신호처리 및 전류원 국지화의 원천기술 개발, 뇌기능 지도화 기술개발
- 주관부처(협조부처): 과학기술부
- 총괄주관기관(책임자): 한국표준과학연구원(이용호)
- 총 연구기간 : 2001년 ~ 2005년
- 총 연구비 : 총 1,468백만원(정부 1,468백만원)

2) 추진실적(사업개시~2005년까지의 실적 작성)

- 연구기간 : 2001년 ~ 2005년
- 연 구 비 : 총 1,468백만원 (정부 1,468백만원)
- 주요성과
- ① 정성적 연구성과(논문, 실용화, 기술이전, 기타 등)

■ 뇌자도 측정기술 개발

- 제2세대 방식의 SQUID를 사용한 평면형 40채널 및 반구형 37채널 장치구성
- 뇌자도 측정을 위한 저잡음 DROS 자력계 설계
- 다채널 뇌자도 신호수집 및 신호처리 운용 프로그램 개발
- 3차원 좌표 측정기를 사용한 머리좌표 측정기술 개발
- MRI 좌표변환 및 뇌자도와 MRI의 결합기술 개발
- 전류원 국지화 방법개발 및 국지화오차 분석기술 개발

- 단일 쌍극자 전류원 모델의 청각유발 전류원 국지화
- 언어인지과정에 관련된 활성화 부위추정
- 간질발생 위치추정

■ 뇌자도 측정기술 활용

- 간질환자 뇌자도측정 : 삼성서울병원, 아산서울병원, 충남대병원
- 간질 뇌자도 파형판독 프로그램 제공
- 전류원 국지화 써비스 : 환자의 MRI에 전류원 위치 표시
- 한국어 언어인지과정 연구: 고려대 심리학과
- 경혈 침자극에 의한 뇌자도 측정기술 제공 : 대전대 한의과대학

■ 생체자기 측정기술 지원

- 뇌자도 측정장치(2채널) 설치 및 측정기술지원 : 동신대 한의대
- 64채널 심자도 장치제작 및 연세의료원 심장혈관병원에 설치
- 64채널 심자도 장치 국립대만대학병원에 설치 및 공동연구진행
- SQUID 장치 (1채널) 일본 큐슈대학에 제공

② 정량적 연구성과

(2005.12.31 기준)

특 허			논 문			기술이전		
국	내	국외 국내		국외	SCI	건수	기술료 (백만원)	
출원	등록	출원	등록	+ পা	44	SCI	신ㅜ	(백만원)
3	6	0	0	41	46	39		

3) 2006년도 계획

- NRL 사업 종료로 전문연구사업에 흡수하여 추진
- 전문연구사업명 : 생체신호 측정 및 분석기술 개발

생체신호 측정 및 분석기술 개발 (전문연구사업)

1) 사업개요

○ 사업목표 : 300채널 벡터뇌자도 장치 및 뇌기능 매핑기술 개발

○ 사업내용 : 뇌기능 검사 및 뇌질환 정밀 진단에 활용할 300 채

널 벡터뇌자도 측정장치를 개발하고 이를 활용하여

뇌기능을 연구할 수 있는 분석 기술을 개발

○ 주관부처(협조부처): 공공기술연구회

○ 총괄주관기관(책임자): 한국표준과학연구원 (박용기)

○ 총 연구기간 : 2005. 12. 1. - 2014. 12. 31. (9년 1개월)

○ 총 연구비 : 총 150억원 (정부 150억원, 민간 ○)

3) 2006년도 계획

○ 목 표 : 뇌자도 측정 기술의 전 단계인 심자도 측정 기술 개발

○ 연구내용

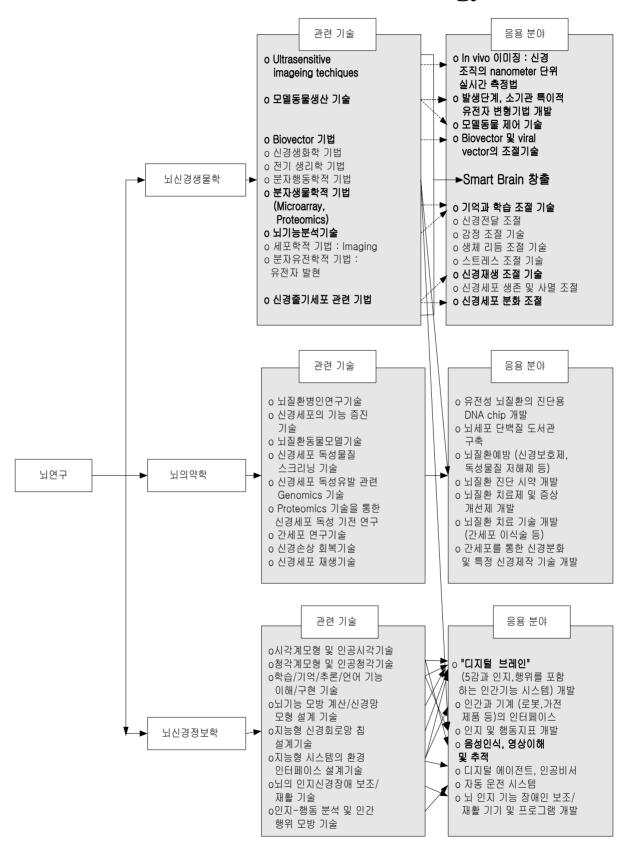
- 비차폐 환경에서 사용이 가능한 high balancing 검출코일 제작공정 확립

○ 연구비: 1,000백만원

○ 주요 추진일정

- 2006. 4. 전문연구사업 시범사업 평가

- 2006. 5. 전문연구사업 본격 추진 예정


4) 투자계획

(단위:백만원)

구 분	'04년 이전	2005년	2006년	2007년 이후	합계
과학기술부		750	1000	13,250	15,000
민 간*			50	150	200
계		750	1050	13,400	15,200

*해외수탁 : 대만국립대학에 반구형 뇌자도장치 설치사업 추진 (사업비 : 250백만원)

<참고 1> : 뇌연구 기술계통도(Technology Tree)

<참고 2> : 분야별 연구동향

□「뇌의 신경생물학적 이해」분야

- 시냅스 가소성의 분자적 기전/수용체 작용
 - 신경연접 형성과정에 교세포의 작용에 대한 기전 규명 (Cell, 2005)
 - 신경연접에 존재하는 미토콘드리아가 시냅스가소성에 의존적인 조절에 관여함을 규명 (Cell, 2005)
 - 신생아 해마에서 AMPA 시냅스가 활동성 의존적으로 존재하고 조절됨 (Nature Neuroscience, 2004)
- 활동성 의존적인 신경활성의 강화에는 글루타메이트 수용체가 없는 AMPAR의 경로 특이적 이동이 필수적임을 규명 (Neuron, 2006)
- ReAsH-EDT(2)와 FIAsH-EDT(2) 염색방법을 이용하여 신경 세포 활동성 변화에 따른 글루타메이트 수용체 구성요소의 신경가 지돌기에서의 합성과 신경연접 막으로의 융합을 시각적으로 관 찰 (Nature Neuroscience, 2004)
- MAPK가 장기간 기억 형성에 필요한 단백질 합성 유도에 중요한 역할을 하는 것을 규명(Cell, 2004)

○ 뇌의 구조적 가소성

- 인간 뇌실아래층에 위치하는 별아교세포는 흰쥐나 다른 포유동물 에서와 달리 이동하지 않으면서 신경줄기세포로 존재 (Nature, 2004)
- 신경줄기세포의 분화과정에 히스톤단백질의 변형이 관여하고 있음을 규명 (PNAS, 2004)
- 신경줄기세포의 분화과정에 sRNA가 관여하고 있음을 규명 (Cell, 2005)
- 신경세포 재생의 억제는 신경모세포의 부재가 아니라 새로운 신경세포발생을 거부하는 신경조직망의 영향이라는 연구 결과 (Nature, 2003)
- 발생초기 남녀의 뇌발달은 성호르몬이 작용하기 이전에 분화됨이 제시됨 (Nature, 2003)

- 특정 유전자 (fru)가 두뇌 발달에 따른 성 특이적인 행동을 유 도한다는 사실을 밝힘 (Nature, 2005)
- 신경세포 유전자 기능
 - 뇌 특정 지역에서 발현하는 전사인자군의 대단위 발굴 및 전사 인자 발현 지도 작성 (Science, 2005)
 - 차등적 cDNA microarray을 이용하여 대뇌피질 신경세포에서 신경가 소성에 의해 조절되는 유전자들을 발굴 (PNAS, 2004)
 - 5-HTT 유전자의 다형성은 우울증 발병 위험을 높이지만, 환경 스트레스가 양호할 때는 우울증이 발병하지 않음 (Science, 2003)
- 신경신호전달의 분자적 기작 규명
 - 후각수용체의 동정으로 Dr. Richard Axel 과 Dr. Linda Buck이 노벨 생리의학상 수상 (2004)
 - 통증감각신호 전달에 관련한 TRP유전자의 발굴 및 기능 규명 (Nature Genetics, 2005)
- 이온에 의해서 자극받는 신경세포의 수용체에 보조적 구조체가 존재한다는 것이 TARP의 존재로 처음 증명됨 (Science, 2006)
- 신경단위세포의 이동을 방해해 비정상적인 뇌 발달을 야기하는 단백질 상호작용이 동정됨. 더블코르틴 단백질이 변이로 인해 Cdk5에 의한 인산화가 억제되어 원래의 활성을 상실하여 신경단 위세포가 제 위치로 이동하지 못하게 됨을 규명 (Neuron, 2004)
- 박테리아 인공염색체 (bacterial artificial chromosomes: BACs) 조작 방법을 사용하여 제작한 유전자 과발현 돌연변이 마우스 분석을 통한 GENSAT (Gene Expression Nervous System Atlas) 제작으로 유전자의 특성을 규명할 수 있는 중요한 자료를 제공하는 연구 결과가 발표됨 (Nature, 2003)

□ 『뇌정보처리 이해 및 응용』분야

- 뇌-기계 접속 기술의 발달
 - 뇌-기계 접속 기술은 뇌신경활성도를 이용해 외부 기계를 제어 하거나 반대로 외부에서 뇌신경활성도를 제어하는 신기술로 매우 빠르게 발전하고 있음
 - 원숭이 뇌에 전선을 연결하여 생각만으로 3차원 로봇팔 구동에 성 공한 연구결과 발표 (Lancet Neurology, 2003)
 - 인공와우 이식, Cyberonics: NCP vagus nerve stimulation, Medtronic: Deep brain stimulation system은 이미 상용화에 성 공한 분야
- 뇌전도 분포와 신경 신호 리듬 분석을 통해 뇌-컴퓨터 인터페이스 개발 연구가 지속적으로 발전하고 있음 (IEEE Trans Neural Syst Rehabil Eng, 2003)
- 뇌과학 연구를 경제학 연구에 응용한 신경경제학의 부상. 즉 MRI, EEG, 인지기능에 대한 연구들을 통해서 소비자들이 리스크와 보상을 어떻게 계산하는지 분석하여 최종적으로 구매력에 어떤 영향을 주는지에 대한 연구 분야가 발전 (포브스지 기사, 2003)
- 도덕적 판단과 같은 고차원적인 뇌기능 과정 중 활성하는 신경 해부학적 구조를 규명 (Neuron, 2004)
- fMRI를 이용하여 자폐증 환자의 독특한 학습 능력의 신경해부학 적 단서를 밝혀냄 (Neuron, 2004)
- fMRI를 이용하여 placebo가 보여주는 진통효과의 신경 해부학적 단서를 밝혀냄 (Science, 2004)
- fMRI, 행동연구, 컴퓨터 모델링을 이용하여 사물의 형태를 인식 하는데 사용되는 뇌신경활동의 연구가 수행됨 (Neuron, 2006)

□「뇌질환 예방 및 극복」분야

- 뇌질환 관련 유전자에 관한 연구가 활발히 진행
 - RNAi를 이용한 ALS 변이유전자 제어로 ALS 마우스 실험 동물 의 치료효과 발견 (Nature Medicine, 2005)
 - 다발성경화증(multiple sclerosis)의 경우 세포질에 존재하는 phospholipase A2 억제에 의해 병의 발병 및 진행을 제어할 수 있음 (Neuron, 2004)
 - 중추면역계의 활성 조절을 통한 퇴행성신경질환의 치료/예방 가능성 제시 (Science, 2003)
- 알츠하이머병에서 축색 전달효율의 저하 관련 신규 병리기능 규명
- 도파민 분비가 신경줄기세포의 분열 조절에 관여함을 규명하여 파킨슨씨병의 새로운 병리생태 과정을 제시함 (Nature Neuroscience, 2003)
- 성 결정에 관계하는 유전자와 파킨슨씨병 등 도파민에 관계되는 질병과의 상관관계를 제시함 (Current Biology, 2006)
- 뇌과학연구에 획기적인 변화를 주도할 수 있는 단백질체학과 유 전체학의 융합기술개발 예상 (Nature, 2003)
- 비만 조절의 분자생물학적 기전이 일부 규명됨으로써 차후 생물학적 이해에 근거한 비만 조절의 기술의 개발 가능성 시사 (Cell, 2004)

<참고 3> : 국가별 연구동향

- 미 국립보건원(NIH)은 1990년 1월 의회가 선언한 「Decade of the Brain」을 실천하기 위해 뇌 연구에 대규모 연구비를 투자하였으며 이 프로젝트가 끝난 후에도 막대한 연구비를 투자중임. 2003년 예산은 65억불에 달함
- 미 국립보건원 산하의 뇌연구 관련 연구소를 중심으로 뇌연구 및 기술 개발, 인프라 구축 등의 컨소시움을 결성하여 추진 중이며, 기능적 신경연접과 시냅스 변화 등에 관한 데이터베이스화 등 대형사업을 추진하고 있음
 - 분자도서관프로젝트(Molecular Library Project)를 통하여 신기술 개발, 신약개발 및 뇌질환 치료 연구를 위한 대단위 스크리닝에 필요한 소분자 라이브러리를 범 국가적으로 공유하는 인프라 구축
 - 뇌 발달 및 뇌 질환 관련 유전자 발현 지도 사업 (2002)
 - DNA microarray 컨소시엄을 통하여 뇌과학 관련 연구자들에게 microarray를 이용한 연구의 재정적 및 기술적 지원을 시행 (2002)
- 국립과학재단(NSF)에서 "인간기능 향상을 위한 수렴기술"(Converging Technologies for Improving Human Performance)로서 NBIC (NanoTech, BioTech, InfoTech, Cognitive Science) 제시(2002. 6)
 - "인간인지 및 대화기능의 확대", "건강 및 신체능력 향상", "단체 및 사회적성과 향상", "국가보안", "과학과 교육의 결합"의 5개 분야 제시

- 뇌기능측정기술을 주로 포함하는 미 국립보건원(NIH) 산하 "국립 의료영상 및 생명공학연구소"(National Institute of Biomedical Imaging and Bioengineering)에 최초로 연구소장이 취임(2002. 9) 하고 연구과제 지원(2002. 4)을 시작
- **뇌 유전자 발현 분석**을 주도하는 Allen Institute for Brain Science 가 Microsoft사와 협력하여 출범 (2003)
- 단일신경세포에서 개체에 이르는 시스템 연구, **뇌화상 신기술** 개**발, 뇌-기계접속기술(BMI)**을 활발히 개발하고 있으며, 특히 뇌-기계접속 분야에서는 **인공와우, 인공망막** 등이 **산업화** 되었음 (2003)
- 미연방청 (Federal Agency)은 임상 시험 3단계 향후 경제적 유용성이 있는 분야에 10년간 \$15 billion 이상을 투자하는 프로젝트를 추진 중(2006년)
 - 미국립보건원 (NIH)과 미약물남용국립연구원 (NIDA) 지원 산하 NINDS (The National Institute of Neurological Disorders and Stroke) 주관으로 뇌신경질환 치료접근 전반에 대한 임상시험방안에 따른 효과, 안정성 및 신뢰성을 최적화를 목적으로 신경과학 임상시험방법(Clinical Trial Method in Neurology,)에 관한 연구과제를 기획발표 추진 중(2006년).
 - NIH 산하의 신경과학분야인 NIMH (National Institute of Mental Health)에서는 ADHD(Attention Deficit Hyperactivity Disorder)를 보이는 환아의 부모에 대한 우울증 및 스트레스에 대한 행동 치료, 환아의 심리학적 치료 및 atomoxetine (Strattera)의 약물치료에 대한 임상효과를 검증하고 있음 (2006년)
 - NINDS (the National Institutes of Health's National Institute of Neurological Disorders and Stroke)에서는 임상시험 분야에 대한 지원계획을 수립, 미국 성인 사망율 3위를 차지하고 있는 뇌졸중 치료에서 neuregulin-1이란 성장요소는 뇌 손상 후 13시간 동안 신경세포를 보호하고 염증반응을 감소시킬 수 있음을 동물

시험을 통해 규명하여, 새로운 약물을 통한 임상치료의 기대효과를 제시함(2006년)

□ 일 본

- 일본은 21세기를 '뇌의 세기(Century of the Brain)'로 명명하고 이화학연구소(RIKEN)소속 뇌과학종합연구센터(BSI)에 매년 약 100억엔 이상을 투자하여 뇌의 이해·보호·창조를 추진하고, 일본 정부의 뇌과학 투자 비용은 2005년에는 500-800억엔 수준에 이를 것으로 전망됨
- 최근 일본 뇌과학종합연구센터에서는 뇌의 이해·보호·창조이외에 양육 (Nurturing the brain)이라는 분야를 설정하고 뇌의 발달 및 인간뇌의 인지 학습 등에 관련된 연구에 투자를 하고 있음
- 이외에도 뇌과학종합연구센터에서는 뇌관련 연구에 필수적인 기술개발 및 지원확립을 위하여 Advanced Technology Development Group 및 Research Resource Center 등을 설치
- 2001년 의회에서 의결된 '제2기 과학기술 기본 계획'에는 생명과 학 분야를 국가 전략적인 추진이 필요한 4대 과제의 하나로 지 정하고 있으며, 생명과학 분야에서 뇌 연구를 연구 개발의 3대 중 점 영역과 추진 전략으로 명시하고 있음

- 뇌의 통합적 연구 전체를 기획, 조정, 연구연락등을 총괄적으로 담 당하는 연구기획팀을 문부과학성에 설치
- 2004년부터 뇌기능의 통합적인 연구조직의 필요성에 의해 뇌의 단계적인 기능발현과 통합적 기능의 이해를 목표로 문부과학성은 '통합뇌'라는 특정연구분야를 출범시킴
- 독립 행정법인인 과학기술진흥기구(Japan Science and Technology)는 2004년 1월 30일자로 계산뇌 (Computational Brain)라는 연구명 으로 프로젝트를 2004년 발족.(5년간 8억엔의 연구비를 지원)
- 이화학연구소에서 알츠하이머 병의 원인 해명을 위한 큰 진전을 이루었고, 세계 최초로 생체 내에서 뇌조직의 입체 구조를 파괴한 후 신경 줄기세포의 변화를 관찰한 바 있음 (2003)

□ 중 국

- 중국은 국가 경제발전에 있어서 과학기술의 중요성을 인식하여 범국가적으로 과학기술 분야를 지원하고 있으며 최근의 급속한 경제발전은 과학기술에의 투자를 촉진시키는 선순환 구조를 형성하고 있음
- Chinese Academy of Science가 중요 연구 분야에 대한 지원을 담당하고 있음. 특히 1998년 Pilot Project of Knowledge Innovation Program을 시작하였는데, 목표는 지식경제(knowledge-based economy)시대에 대응하기 위한 구조조정을 하는 것임
- 중국과학원과 신화통신사가 공동으로 "21세기에 인류에게 중대한 영향을 주는 10대 과학기술 경향"을 예측하였는데, 이중 4번째로 인지신경과학이 선정됨 (2001)

○ 상해에 Institute of Neuroscience를 설립하고 미국에서 활동하는 저명한 신경과학자인 Mu-Ming Poo 박사를 소장으로 임명하는 등 신경과학 연구가 활성화되고 있음

□ 유 럽

- 유럽공동체(EU)도 미국의「Decade of the Brain」에 자극받아 1991 년「European Decade of the Brain」를 선언
- 유럽은 각 나라의 독자적인 뇌신경 연구보다는 유럽 연합차원에서 체계적이고 융합된 연구를 통해 미국과 일본의 뇌연구에 대해 경 쟁력 있는 뇌 연구를 지향하고자 하는 움직임이 뚜렷함
 - HUPO산하의 HBPP (HUPO Brain Proteome Project)를 발족하여 유럽연합국가 및 미국 아시아국가등을 통합하여 뇌발달 및 뇌질환에 관련된 단백질체의 공동연구를 기획 수행하고 있음
- 유럽 연합 차원에서 EU's research funding programme (the 6th Research Framework Programme, FP6, 2003-2006)을 통해 22 억 5천 오백만 유로 (3조 3천억원)에 해당하는 연구기금을 조성하여 뇌과학을 비롯한 생명공학 연구 지원
- 다가올 FP7 (the 7th Research Framework Programme)에는 생 명과학분야 중 뇌과학 분야를 별도로 기금 및 프로그램을 책정 하려고 기획중임
- 영국의 Medical Research Council (MRC)은 2002년~2003년에 걸쳐, 회계연도 기간 총 4억 파운드의 연구지원금중 Neuroscience 및 Mental Health 분야에만 7천4백만 파운드 (약 1,500억원)이상 을 지원
- 2003년도에는 추가로 1,500만 파운드의 예비비, MRC (973만 파운드), BBSRC (4백6만 파운드), EPSRC (81만 파운드) 및

CCLRC (40만 파운드)의 4개의 council의 연합체에 집중적으로 뇌과학 분야를 지원함

○ 프랑스의 경우 뇌연구 투자 규모는 약 10조원 수준으로, 국가예산 (45%)과 기업에 의한 예산 (55%) 이 비슷한 수준으로 지원되는 구조를 확립하였음. 이 중 정부 지원 예산 중 뇌과학 연구에 대한 예산은 전체 생명과학연구개발 예산의 약 20%를 차지하고 있음

□ 국제협력

- 뇌과학 연구개발이 세계적 규모의 동동연구를 통하여 수행되는 경우가 증대되고 있음
- 한·미 신경과학자 심포지움 개최(2004. 11, San Diego)
 - Association of Korean Neuroscientists Second Annual Symposium (AKN)
- 뇌과학 연구 지원을 중심으로 이루어지고 있는 선진국 국제협력 프로그램인 HFSP(Human Frontier Science Program)에 한국이 정 식 가입(2004)
- HUPO (Human Proteomics Organization) 산하의 HBPP (Human Brain Proteomics Project)에 한국측 단백질체 연구진 참가 (2004) 및 co-chair로 활약이 기대됨
- 뇌과학 프론티어 사업의 국제공동연구사업의 일환으로 영국의 MRC와 함께 한・영 신경과학 국제심포지움 한국 개최 (2005)
- 한/중/일/인도 아시아 4개국 뇌연구워크샵 (1999-현재)을 통한 아시아권의 뇌연구 교류 증진
- 뇌과학 프론티어 사업 중심으로 일본 뇌과학종합연구센터, 유럽 국가들과의 다각적인 학술교류를 추진중