

議案番號	第 3 號
接受	2001. 12. 13.
年月日	(第1回)

議決事項

腦研究促進基本計劃(修整案)

國家科學技術委員會 **바이오**技術·産業委員會

提出者	科學技術部教育人的資源部保健福祉部產業資源部情報通信部
提出年月日	2001. 12. 13.

1. 議決主文

뇌연구촉진기본계획 수정(안)을 다음과 같이 의결한다.

2. 提案理由

인간의 유전체염기서열이 완성되어 뇌를 비롯한 인체의 생명 현상이 유전자에 의하여 규명되고 있으며 정부내 생명공학 투자가 확대되는 등 기술개발환경이 급격히 변함에 따라, 중점연구분야를 조정하고 산재한 뇌연구 수행역량을 집중하기 위해 뇌연구촉진 기본계획을 수정하려는 것임.

3. 主要骨子

- 2007년까지 뇌신경질환의 예방·치료기술을 개발하고 뇌의 정보처리 메카니즘을 응용한 인공두뇌 구현을 목표로 3단계 사업을 추진함.
- 중점 연구 분야는
 - 뇌 발현유전자 발굴 및 기능규명 연구
 - 뇌질환 치료제 개발 및 신경줄기세포를 이용한 뇌질환 치료기술 개발
 - 인간뇌를 모방한 '디지털브레인' 개발 등을 선정함.
- 뇌연구 분야에서 장기·대형 국가사업을 신설하는 등 2007년까지 5개 부처에서 총 2,986억원을 투입함.

4. 参考事項

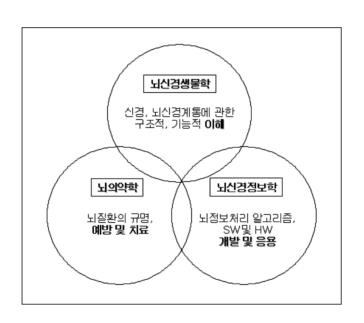
- 뇌연구실무추진위원회 심의(2001. 12. 10)
- 관계부처와 협의 완료

腦研究促進基本計劃 (修整案) (1998~2007)

2001. 12

科學技術部 保健福祉部 情報通信部

教育人的資源部 産業資源部


목 차

Ι.	概要
Ⅱ.	腦研究 推進經緯 및 國內·外 動向 ························2
Ⅲ.	腦研究 技術水準·豫算·人力 分析4
IV.	腦研究 目標 및 核心課題7
V .	腦研究 推進體系 9
. IV	腦研究 推進戰略10
VII.	所要人力
VIII.	所要豫算
く別	」册 〉腦研究促進基本計劃(修整案) 全文

I. 概要

1. 뇌연구 개요

- 신경세포 및 뇌신경조직의 구조와 기능을 이해 (뇌신경생물학)
- 뇌질환의 기제를 규명하고 예방 및 치료에 필요한 의료기술과 신약을 개발 (뇌의약학)
- 뇌의 구조와 정보처리의 원리를 이해하고, 그에 기반한 '디지털 브레인' 구현 및 응용 (뇌신경정보학)

2. 뇌연구의 필요성

○ 학문적 측면 : 인간의 본질을 규명하는 원천지식 축적

○ 경제적 측면 : 방대한 뇌의약 시장 및 생명·정보공학적 응용

○ 복지적 측면 : 노령화사회에서 뇌질환의 극복은 복지사회의 기반

Ⅱ. 腦研究 推進經緯 및 國內・外 動向

1. 추진 경위

○ 1997. 9: 「뇌연구개발사업 기본계획(Braintech 21)」수립

○ 1998. 5: 「뇌연구촉진법」제정

○ 1998. 11: 「뇌연구촉진법 시행령」제정

○ 1998. 11:「뇌과학연구사업」및「뇌의약학연구사업」착수

○ 1999. 7 : 「뇌연구촉진기본계획」수립

2. 연구 환경 변화

○ 기술환경변화

- Human Genome Project 결과로 인간유전체염기서열이 해독되어 뇌와 인체의 생명현상 및 질병연구의 대 전환점 도래
- 뇌기능 이해(BT)와 뇌정보처리기술(IT)을 바탕으로 인공두뇌 실현 가시화

○ 외부환경변화

- 정부의 뇌연구지원이 다각화되고 벤처기업등을 통해 민간의 뇌연구 투자개시 등 국내 뇌연구 급성장
- 1998년 6월 뇌학회가 창립되어 학제간 협력 연구의 틀 구축
- 전문학술지인 한국 뇌학회지 창간(2001)
- 1999년부터 뇌연구 관련한 한일공동워크샾 및 한미공동워크샾의 정례적 개최 및 다양한 국제학술행사 개최

3. 선진국 동향

- 미국, 일본, 유럽 등 뇌연구 분야 지원 강화
- 기초연구 결과의 확산 및 산업화 기회의 확대
- 일부 선진국의 뇌연구 결과 산업화 투자 강화
- OECD는 범세계적 신경정보 DB 구축 추진

<미 국>

- 1989년 「뇌의 십년」 선언 이후 최근 뇌연구에 지원을 가속화하고 있으며 국립신경질환·뇌졸중연구소(NINDS)는 「Neuroscience at the New Millennium」연구계획의 실행안을 2000. 5 발표하고 연구비를 연 10억불 수준으로 증액
- MIT는 뇌연구를 위해 향후 20년에 걸쳐 3억5천만달러 규모의 민간기부 약정 체결(2000, 2)

<일 본>

- 문부과학성이 주도하는 다부처 협력사업인 「Brain Science Project (1997-2016: 총 2000억엔 규모)」수행 중
- 민간기업들은 뇌신경질환 치료제의 개발과 인공지능을 활용한 로봇개발 및 신경회로망칩의 개발에 적극적 투자

<유럽 등>

- G7 국가 등의 HFSP(Human Frontier Science Program)은 뇌연구와 분자 생물학을 주요 연구분야로 명시
- 프랑스, 스위스, 네덜란드, 이스라엘은 뇌연구를 주요 국가사업으로 추진
- OECD 거대과학 포럼(Megascience Forum)의 "생물학적 정보학 (Biological Informatics)" 그룹은 "신경정보학(Neuroinformatics)"

Ⅲ. 腦研究 技術水準・豫算・人力 分析

- 선진국에 비해 전반적으로 낙후되어 있으나, 뇌연구기본계획의 수립·시행 후 연구인력, 협력체제 등 연구기반이 구축됨
- 일부 분야는 세계 선두그룹에 크게 뒤지지 않는 분야도 있으며, 특히 투자대비 높은 연구결과 생산성을 보임
- ⇒ 연구역량과 연구비투자를 집중한다면 일부 분야는 수년 내에 국제경쟁력을 갖춘 수준으로 급성장할 잠재력이 있음.

1. 분야별 기술수준 및 실용화 시기 예측

구 분		개발	- 단기	¶(%)	실 용	· 화 /	시기	예 측
1 L	미국	일본	EU	한국	미국	일본	EU	한국
<뇌신경생물학 분야>								
○뇌 기능 연구를 위한 기술 개발	50	40	40	35	2005년	2007년	2007년	2009년
○뇌기능 가소성 이해	65	50	55	40	2003년	2005년	2005년	2008년
○신경시스템 구조와 신경기능 이해	60	50	45	30	2007년	2009년	2009년	2011년
○유전자 조작을 통한 뇌기능 향상	35	30	30	25	2007년	2009년	2009년	2011년
<뇌의약학 분야>								
○뇌질환 규명 및 진단 연구	80	65	65	45	2003년	2005년	2005년	2010년
○신경세포 재생 및 기능 증진	60	40	45	30	2004년	2006년	2005년	2012년
○뇌질환 예방 및 치료기술	75	65	65	45	2003년	2005년	2005년	2010년
○신경줄기세포 연구	60	40	40	30	2007년	2009년	2009년	2011년
<뇌신경정보학 분야>								
○뇌신호 측정 및 분석 기술	60	40	50	40	2002년	2003년	2003년	2003년
○인공시각 구현 응용 기술	80	70	70	80	2003년	2003년	2003년	2003년
○인공청각 구현 응용 기술	80	70	70	80	2004년	2005년	2005년	2004년
○학습/기억/추론/언어 기능 구현 기술	60	40	50	40	2005년	2006년	2006년	2007년
○시스템 통합("디지털브레인")	40	30	30	30	2008년	2009년	2009년	2008년
○신경망칩	90	90	80	50	2003년	2003년	2004년	2008년
○뇌 기능 모방 멀티미디어 처리	80	70	70	60	2004년	2005년	2005년	2006년

주: "기술개발단계"는 실용화시기의 기술수준을 100으로 볼 때, 현재의 기술수준을 지표화한 것임.

0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
계획 단계		개발초기 단계		개발중기 단계		개발후기 단계		개발완료 단계		실용화 단계

출처: "뇌연구촉진기본계획 보완 발전을 위한 기획연구"(2001. 5-11)

2. 뇌연구 국제 논문 발표 현황

○ 뇌연구의 양적인 면은 선진국에 비하여 크게 미흡하나 '98년 이후 연구결과발표가 대폭 증가

< 뇌연구 국제 저명 논문지 편수 비교 >

단위: 편

	뇌신경	과학 및 노]의약학*	뇌신경정보학**		
	한국	일본	미국	한국	일본	미국
′96	114	4,344	16,201	99	814	5,529
′97	166	3,944	14,516	115	915	5,769
′98	255	4,888	17,766	146	980	5,982
′99	342	4,843	17,552	187	1,066	6,417
2000	474	5,165	17,873	206	1,126	6,550
합 계	1,351(1)	23,184(17)	83,908(62)	753	4,901	30,247
(상대편수)	1,001(1)	23,104(17)	05,900(02)	(1)	(6.5)	(40.2)
연평균	26.6%	2.6%	0.3%	15.6%	6.7%	4.4%
증가율	20.070	2.076	0.5/6	15.0/0	0.170	4.4/0

^{*} Neuron or Brain or Nervous or Nerve and Korea[affiliation] and year[date]로 하여 Medline DB 탐색의 결과

3. 뇌연구 정부 연구예산 비교

○ 주요 되연구 기관의 연구비는 미·일등 선진국에 비해 크게 부족 < 한·일·미 되연구 정부 예산 비교 >

^{**} SCI-Expanded에서 "Neural network or Visual or Auditory or Cognitive or Inference" and Korea [address] and year[date]으로 하여 Search 한 결과임.

	한국	일본	미국
예산규모 (2001년)	227억원*	350억 엔**	34억불***
비율	1	15	190

^{*} 정부 전체 총 연구비

^{**} 문부과학성, 통상산업성의 뇌연구비

^{***} NEI, NINDS, NIMH, NSF의 뇌연구비

4. 각국의 뇌연구 인력 비교

○ 선진국과 비교하여 연구비에 비해 연구인력은 상대적으로 풍부

< 한・일・미 뇌연구 박사급 인력 비교 >

단위: 명 (2000년 현재)

구분	한국	일본	미국
뇌신경생물학, 뇌의약학	750	3,000	30,000
뇌신경정보학	400	2.500	16,000
(뇌인지과학 포함)	400	2,500	16,,000
계(비율)	1,150(1)	5,500(5)	46,000(40)

5. 분야별 강점 및 취약점 분석

<강점 부문>

- 수적으로는 적으나 특정 연구분야에서 이미 세계적으로 인정을 받고 있는 과학자 및 연구그룹이 형성
- 학제적 연구의 필요성을 인식하고 긴밀히 협력하는 학제적 연구팀들의 활성화
- 생명공학 등 생명기술(BT)의 연구 활성화와 세계적 수준의 정보통신기술(IT) 및 산업화 능력

<취약 부문>

- 뇌의약학과 뇌신경정보학의 기반을 이루는 다양한 뇌신경생물학 핵심기초가 취약함 (파급효과 큰 논문지 게재 미흡)
- 뇌연구에 대한 인식부족과 투자부족으로 전반적 관련 연구인력이 절대 부족
- ⇒ 우리의 강점분야를 선정하여 한정된 인력과 자원을 효율적으로 집중지원하는 전략 필요

Ⅳ. 腦研究 目標 및 核心課題

1. 기본목표

- o 2007년까지 뇌연구 일부 분야에서 세계적 경쟁력 확보
 - 뇌신경질환의 예방·치료 기술 개발
 - 뇌 응용ㆍ구현의 핵심기반기술 확립
 - ⇒ 산업발전 및 복지증진에 기여

2. 단계별 목표

제1단계 (1998-2000)

O 뇌연구의 핵심기초기술 확보 및 인력 양성

- 뇌에 관한 기본적 이해 및 뇌정보처리에 기반한 지능정보 처리 기반기술 확립

제2단계 (2001-2003)

○ 뇌연구 기반의 확장 및 응용기반기술 확보

- 기초 기반기술의 심화 및 뇌질환 예방·치료기술 개발 연구 확산과 뇌정보처리를 모방한 지능시스템 및 응용기술 확보

제3단계 (2004-2007)

O 뇌연구의 실세계 응용 및 선진화

- 뇌질화 예방·치료제의 개발
- 뇌정보처리를 응용한 「Digital Brain」 구현

3. 중점 연구개발 내용 및 핵심과제

분야	중점 연구개발 과제
	○ 뇌기능 연구를 위한 기반기술 개발 - 생체내 이미징, 모델동물 제어
뇌의 신경생물학적	○ 뇌기능 가소성(Plasticity) 이해 - 학습 및 기억의 신경생물학적 메카니즘 규명
이해	○ 신경시스템 구조와 고등신경기능 이해
	○ 뇌 기능유전자 연구 - 뇌에서 발현되는 유전자 발굴 및 기능연구
	○ 뇌신경질환의 기전 규명 및 진단 연구
뇌질환 예방	○ 신경세포 재생 및 기능 증진 - 손상 신경세포의 세포사억제 및 재생 유도 기술
및 극복	○ 뇌질환 예방 및 치료제 개발 - 신경세포 독성물질에 대한 보호제 및 저해제 개발
	○ 신경줄기세포 연구 - 신경줄기세포 분화 및 이식기술
	○ 뇌신호 측정 및 분석기술 연구
	○ 뇌정보처리기반 인공시각시스템 개발 - 시각칩 개발 및 S/W 개발
1) = 1 1 2 1 - 1	○ 뇌정보처리기반 인공청각시스템 개발 - 청각칩 개발 및 S/W 개발
뇌정보 처리 응용 및 구현	○ 뇌의 학습·기억·추론·언어기능 이해 및 구현 - 지능형 문제해결 시스템 및 에이전트 개발
	○ 행동의 뇌정보처리적 이해 및 구현 - 신경계의 통신 및 제어기전 연구
	○ 뇌기능 모방 디지털 브레인 개발 - 5감을 이용한 인간기능시스템 개발

V. 腦研究 推進體系

1. 기본 체계

- 정부는 관련 부처간 협력을 통한 범부처적 **뇌연구촉진기본계획** 을 수립・시행하며, 과학기술부가 이를 종합 조정함.
 - 국가차원의 대형 신설과제들과 연계된 뇌연구개발 지원체제 확립
- **뇌연구촉진심의회 및 뇌연구실무추진위원회**를 통하여 기본계획의 수립 등 주요 정책 심의
- 민간의 연구참여 여건이 성숙될 것으로 예상되는 제3단계에 산·학·연의 **뇌연구개발 연구망** 운영 및 **콘소시움**을 구성

2. 부처별 역할 (뇌연구촉진법 제14조)

과학기술부

- ○연구개발사업 주관 및 부처간 정책조정
- ○기본계획의 수립과 시행계획 수립의 지원 및 조정
- ○뇌 관련 **중형기반기술** 및 산업화에 필요한 **중형/대형 핵심** 원천기술의 개발
- ○유용한 연구결과의 이용 및 보전을 위한 **정보이용의 지원**

보건복지부

- ○**뇌의약학** 분야의 주관부처
- ○보건·의료 등에 관련되는 **뇌의약학 연구와 그 결과의** 응용기술 개발 및 산업화 촉진

교육인적자원부

- ○학제간 교육프로그램 신설 및 지원을 통한 뇌연구분야의 전문인력 양성
- ○뇌과학 **기초분야의 다양한 연구**지원

산업자원부

○뇌연구 결과를 생산 및 산업공정에 효율적으로 응용하기 위한 **응용기술의 개발 및 산업화** 촉진

정보통신부

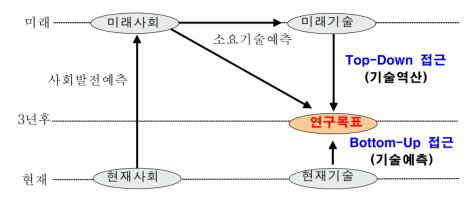
○뇌연구 결과의 **정보·통신분야에의 응용기술 개발** 및 산업화 촉진

Ⅵ. 腦研究 推進戰略

1. 뇌연구촉진정책의 추진체계 재정비

- 대통령 주재 「국가과학기술위원회」산하에 설치된 「바이오기술・ 산업위원회」를 통해 뇌연구촉진정책 최종 심의·조정
 - 부처간 정책조정 및 「생명공학육성기본계획」과의 연계성 강화
- 「뇌연구촉진심의회」 및 「뇌연구실무추진위원회」는 통합하여 정책조정기능의 실효성 제고
 - 2002년 중 법률 개정 추진

2. 뇌연구 분야의 장기·대형 국가사업 신설 추진


- 「뇌연구촉진기본계획」을 효율적으로 추진하기 위해 산발적으로 수행되는 뇌연구를 목표지향적으로 재구성하여 21세기 프론티어연구개발사업 등의 장기・대형 사업으로 추진 검토
- 후보 과제
 - 인간뇌 유전자 발굴 및 기능연구사업
 - 디지털브레인 개발사업 등

3. 산·학·연의 유기적 협력체계 구축

- 산·학·연 수행주체의 기술적 비교우위 분야에 따른 역할분담 체제 확립
 - 학·연에서 도출된 뇌기능 이해 및 뇌질환 치료 후보물질의 산업화 및 임상실험은 벤처기업·제약업체 등과 연계하여 추진
- 1·2단계에서는 학·연 주도로 추진하고, 3단계에서부터 기업체의 참여를 본격화
 - 뇌연구 결과의 응용가능성 추이를 감안하여 뇌신경정보학 분야 3단계사업에는 기업체 참여 의무화 검토

4. 단계별 연구목표의 정확한 설정

○ 현재기술의 발전예측에 의한 상향적(Bottom-Up) 접근과 미래사회의 예측을 통한 하향적(Top-Down) 접근의 공통 부분을 단계별 연구목표로 설정

○ 연구팀 단위로 명확한 세부 연구 목표 및 활용 방안을 설정하고 단계별 평가에 의해 계속/탈락

5. 학제적 연구의 단계적-병렬적 복합방식 도입

- 뇌신경정보학은 기술수준을 뇌기능의 이해, 모델, 구현 및 응용의 4단계로 분류하고, 단계적 방식과 병렬적 방식의 복합추진
 - 이해가 미비한 기술은 뇌기능의 이해부터 시작
 - 이해가 충분하고 모델화된 기술은 바로 구현 및 응용에 돌입

6. 연구팀 간 상호 호혜적인 기술정보의 교류

- 뇌이해를 담당하는 뇌과학자와 뇌응용을 담당하는 뇌의약학자 및 뇌공학자간의 활발한 기술정보 교류를 통한 시너지 효과 극대화
 - KIST 뇌신경생물연구센터 및 KAIST 뇌과학연구센터의 홈페이지에 정보교환의 장 마련(애로기술 해결 지원)

- 뇌신경생물학·뇌의약학·뇌신경정보학 간의 공동 학회 개최를 통해 연구결과 공유 및 상호 정보교환
 - 뇌신경과학, 인지과학, 전자공학, 정보과학 등이 공동참여하는 「한국뇌학회」를 1년에 2회 공동개최

7. 목표기술 확보를 위한 국제협력

□ 국제협력 추진현황

- 뇌과학연구센터와 뇌의약학연구센터가 공동으로 일본 RIKEN의 Brain Science Institute(BSI)와 국제협력 조인
- 스위스 취리히 대학 신경정보학연구소(Institute of Neuroinformatics)와 공동연구 및 인력교류를 위한 국제협력 합의 각서 교환 (2001년)
- 프랑스 INSERM과 뇌신경생물 및 파킨슨질환 등에 대한 공동 연구 추진 (2001년)

□ 향후 추진 계획

- 필요한 분야의 외국 전문가를 단계별로 활용하고 쌍방의 장점을 살리는 상호호혜적 국제협력 추진
 - 뇌연구전용 3T fMRI의 효율적 활용을 위한 기술협력 추진
 - 독일의 Max-Planck-Institute for Brain Research, 미네소타 대학 등
 - 다양한 분야의 뇌연구 전문연구소와의 협력 추진
 - 미국의 UCSD의 인지과학연구소, MIT의 인공지능연구소, Vanderbilt 대학의 시각연구센터 등
 - 유럽의 University College of London의 인지신경과학 센터, 네덜란드의 Nijmegen Institute for Cognition and Information 등

Ⅶ. 所要人力

1. 분야별 인력 수요 및 공급 예측

(단위: 명/년)

구분	연도	_{크 드} 뇌신경생물학		뇌의약학		뇌신경정보학		합 계		
1 4	- 건·-	수요	공급	수요	공급	수요	공급	수요	공급	부족
	2001	70	60	170	150	140	130	380	340	40
2단계	2002	90	70	220	190	170	150	480	410	70
	2003	110	90	250	210	200	170	560	470	90
	2004	120	100	300	250	250	200	670	550	120
3단계	2005	130	110	350	300	300	250	780	660	120
3인계	2006	140	120	400	350	350	300	890	770	120
	2007	150	130	450	400	400	350	1,000	880	120

2. 우수 인력 양성 및 활용 방안

- 학제간적 프로그램 및 산학연 협동 프로그램 활용
- 뇌연구 분야의 박사후 연수(Post Doc.) 제도의 활성화
- 약 150명의 재외 한국인 뇌연구 관련 박사급 전문인력 유치
 - 박사후 및 박사과정의 외국인 연구자 유치 및 활용

Ⅷ. 所要豫算

(단위 : 억원)

구분	1단계 실적	2단계 계획	3단계 계획	합계
ੀ ਦ	(1998-2000)	(2001-2003)	(2004-2007)	[업계
과학기술부	185	400	615	1,200
보건복지부	55	208	602	865
교육인적자원부	53	110	179	342
산업자원부	37	100	173	310
정보통신부	87	90	92	269
정부 계	417	908	1,661	2,986
민간	19	248	853	1,120
합계	436	1,156	2,514	4,106

〈 의안소관 부서명 〉

과학기술부 연구개발국 생명환경기술과					
연 락 처	(02) 503 - 7606				